
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
THE DEVELOPMENT OF A RELATIONAL DATABASE TO SUPPORT

THE FLIGHT HOUR PROGRAM OF COMMANDER, NAVAL AIR
FORCES PACIFIC

by

Mark J. Gonzalez
and

Mitch R. Hayes

June 1996

Thesis Advisor: C. Thomas Wu
Thesis Co-Advisor: John S. Falby

Approved for public release; distribution is unlimited.

1

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 1996

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE

THE DEVELOPMENT OF A RELATIONAL DATABASE TO SUPPORT THE
FLIGHT HOUR PROGRAM OF COMMANDER, NAVAL AIR FORCES
PACIFIC

6. AUTHOR(S)

Mark J. Gonzalez and Mitch R Hayes

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The Air Forces Pacific Financial Analysis Tool (AFAST) has been described by senior leadership within the Air

Forces Pacific (AIRPAC) staff as inaccurate, marginally satisfactory and too small in scope to produce output in a relevant
and timely manner. Moreover, improvements to the current database are time consuming and cost prohibitive; the
absence of adequate design documentation prohibits major modification of the database without significant investment of
the limited resources possessed by AIRPAC.

The primary goal of this thesis is the development of an improved conceptual design of the AFAST database
based on the enhanced entity-relationship model concepts. The secondary goals of the thesis are the specification of the
logical design of the improved database, and the implementation of AFAST II, a prototype application of the redesigned
database.

The results of this thesis are: (1) an enhanced entity-relationship model that fully meets the design goals of Naval
Air Forces Pacific, (2) the specification of the logical design for the implementation of the redesigned database, and (3)
the development of a prototype application validating the conceptual and logical designs.
14. SUBJECT TERMS

Air Forces Pacific Financial Analysis Tool (AFAST)
Commander Naval Air Forces Pacific (AIRPAC)

17. SECURITY
CLASSIFICATION OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY
CLASSIFICATION OF THIS PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

15. NUMBER OF PAGES

148

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

l>m ■.<-.!■£

Approved for public release; distribution is unlimited

THE DEVELOPMENT OF A RELATIONAL DATABASE TO SUPPORT THE
FLIGHT HOUR PROGRAM OF COMMANDER, NAVAL AIR FORCES

PACIFIC

Mark J. Gonzalez
Commander, United States Navy

B.S., United States Naval Academy, 1980

Mitch R. Hayes
Lieutenant, United States Navy
B.S., Seattle University, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1996

Authors

Approved by:

J<tfm S. Falby, Co-Thesis Advisor is Aävis

Ted Lewis, Chairman
Department of Computer Science

in

IV

ABSTRACT

The Air Forces Pacific Financial Analysis Tool (AFAST) has been described by

senior leadership within the Air Forces Pacific (ABRPAC) staff as inaccurate, marginally

satisfactory and too small in scope to produce output in a relevant and timely manner.

Moreover, improvements to the current database are time consuming and cost prohibitive;

the absence of adequate design documentation prohibits major modification of the

database without significant investment of the limited resources possessed by AIRPAC.

The primary goal of this thesis is the development of an improved conceptual

design of the AFAST database based on the enhanced entity-relationship model concepts.

The secondary goals of the thesis are the specification of the logical design of the

improved database, and the implementation of AFAST II, a prototype application of the

redesigned database.

The results of this thesis are: (1) an enhanced entity-relationship model that fully

meets the design goals of Naval Air Forces Pacific, (2) the specification of the logical

design for the implementation of the redesigned database, and (3) the development of a

prototype application validating the conceptual and logical designs.

VI

TABLE OF CONTENTS

I INTRODUCTION !

A. OVERVIEW 1

B.MOTIVATION 2

C. THESIS OBJECTIVES 3

D. ORGANIZATION OF THE THESIS 4

H. BACKGROUND 5

A. AFAST OVERVIEW 5

B. FINANCIAL MANAGEMENT PRACTISES 6

1. Maintenance Process 7
2. Supply Process 8
3. Financial Process 10
4. Operational Report-20 (OP-20) Allocation 12

C. SUBORDINATE COMMAND REPORTING PROCEDURES 14

l.ASKTT AFAST Report 15
2. NALCOMIS AIMD Cost Accounting (NACA) extract program rpt. ..16

D. DATABASE DESIGN REQUIREMENTS 17

1. Overview 17
2. Definition and Scope of AFAST II......; 18
3. Database Design Feasibility 20

a. Software Availability 20
b. Hardware Availability 21
c. Time Constraints 21

E. DEFICIENCIES OF CURRENT (AFAST) DATABASE APPLICATION.. 22

1. Absence of Documentation 22
2. Squadron Deployment Restrictions 23
3. Squadron Detachments 23
4. Squadrons with more than one type Aircraft 23
5. Database Redundancy and Design Inefficiency 24

vn

6. Processed Data Accuracy 24
7. Graphical User Interface Design and Implementation 24

m. DATABASE DESIGN 27

A. TERMINOLOGY 27

1. Database 27
2. Database Management System (DBMS) 28
3. Entity-Relationship Diagram 29

B.AFAST II ENTITY-RELATIONSHIP MODEL DESIGN 31

1. AFAST II Data Requirements 31
2. AFAST II Entities 32
3. AFASTII Entity Attributes 34
4. AF AST II Relationships 35

C. AFAST II DATABASE IMPLEMENTATION 41

IV. AFAST H USER INTERFACE DESIGN 45

A INTRODUCTION 45

B. COMMAND LANGUAGES AND COMMAND LINE INTERFACES 45

C. GRAPHICAL USER INTERFACES 46

1. Direct Manipulation 46
2. Menu Selection 48

a. Menu Structure 48
b. Menu Choice Ordering 49
c. Menu Choice Selection 49
d. Menu Invocation 50
e. Menu Navigation 50

D. APPLICATION DESIGN AND IMPLEMENTATION 51

1. Development Process 51
2. Menu Selection Methodology 53

a. Menu Bar and Command Key Equivalents 54
b. Toolbar... 56

3. Child Window Form Descriptions 57
a. AIRPAC Summary Form 58

vm

b. NAS Summary Form 59
c. CV Summary Form 59
d. CVW Summary Form 60
e. Squadron Form 60
f. TMSForm 62

4. Linear Sequences and Dialog Boxes 63
5. Prototype Performance 65

V. CONCLUSIONS AND RECOMMENDATIONS 67

A. SUMMARY 67

B. ADDITONAL RESEARCH AND DEVELOPMENT 68

1. Development of the Expert User and Graphics Interface 68
2. Definition of AFAST II Hardware Configuration 68
3. Definition of AF AST II Software Configuration 69
4. Modifications to Reporting Procedures 69
5. Validation of the AFASTII Database Algorithms 70
6. Validation of AFAST II Application Interfaces 70
7. Expansion of the Help Function 70

APPENDK A. DATABASE SOUCE CODE 73

APPENDDX B. ASKIT REPORT, NACA EXTRACT, OP-20 REPORT Ill

APPENDDX C. USER INTERFACE DIAGRAMS AND FORMS 116

APPENDK D. ACRONYMS 128

LIST OF REFERENCES 131

INITIAL DISTRD3UTION LIST 133

IX

LIST OF FIGURES

1. Maintenance Flow Diagram 7

2. Supply Flow Diagram 9

3. Financial Flow Diagram H

4. Flow of AIRPAC's Funds 14

5. A Simple Entity-Relationship Diagram 30

6. A Simple Relational Table 30

7. AFAST II Entity - Relationship Diagram 36

8. AFAST II Relational Model 40

9. Data Flow Diagram for Casual User Interface 52

10. AFAST II Menu Bar and Toolbar 54

11. Example of a Squadron Form 58

12. Example of a Detailed Squadron Form 61

13. Example of a TMS Form 63

14. Example of a Dialog Box 64

XI

Xll

ACKNOWLEDGMENTS

We would like to thank Dr. C. Thomas Wu and John S. Falby for their time and

guidance in the development of this thesis. Additionally, we would like to thank Phil

Graessle and Chuck Anderson of AIRPAC for their technical assistance.

We also feel it is important to recognize the support of the staff at the Naval

Postgraduate School. Thank you for your help.

xni

I. INTRODUCTION

This thesis describes the design and development of a database which will be

utilized to assist Commander, Naval Air Forces, Pacific (CNAP) with the management and

analysis of aircraft cost data. The system discussed in this document is a major redesign of

the database structure, graphical user interface and hardware architecture of the AIRPAC

Financial Analysis Tool (AFAST), a database application created and implemented by the

Air Forces Pacific (AIRPAC) staff. Additionally, this document presents our

recommendations and results which summarize system design enhancements, prototype

performance and the likely configuration requirements necessary to implement this design

on the current AIRPAC network.

A. OVERVIEW

In 1994, faced with a shrinking budget and continued requirements to respond

effectively to unique and diverse tasking, CNAP requested that a team be assembled to

identify, analyze and assess the capabilities of the existing financial management systems

being utilized in his enterprise. The objective was straightforward: "develop a

methodology for operating AIRPAC in a more business-like manner" [Boyd94].

In the fall of 1994 selected members of the AIRPAC staff, augmented with

contractor expertise, began the design, definition and implementation of AFAST. With

limited resources and an optimistic operational target date of July 1995, the AIRPAC

AFAST working group elected to create the database application using Foxpro, a

commercial, off-the-shelf software application which would support the design of a

database, as well as the design of user interfaces, reports and graphic displays. In July

1995, Vice Admiral RJ. Spane (then, Commander Naval Air Forces Pacific) expressed

concern that the application was not yet functional and requested that the Naval

Postgraduate School (NPS) perform an independent evaluation of the AIRPAC work

effort and utility of the AFAST application.

One of authors provided on-site assistance to AIRPAC for 2.5 months, during

which time we:

• Voiced our support of, and reaffirmed the requirement for, AFAST.

• Expressed concern with regard to the absence of design documentation.

• Questioned the accuracy of imbedded algorithms.

• Confirmed the AIRPAC staffs speculations that the AFAST application design
had performance limitations given the intended size and scope of the database.

In October 1995, the authors requested and received permission from AIRPAC to begin

the redesign of AFAST. The scope of the initial research was limited due to the absence

of funding and limited faculty support. In April 1996, after reviewing the NPS

preliminary redesign proposal (as well as weighing system requirements and development

costs), CNAP elected to fund the Naval Postgraduate School effort (to include faculty

support), to provide an operational database, associated applications and system

documentation.

B. MOTIVATION

The defense budget continues to decline and the armed forces are employed in

increasingly unexpected roles, business processes are receiving increasingly more attention

from the Department of Defense, and more definitively, the United States Navy. While

classic profit and loss accounting is not (always) applicable in a military enterprise,

intelligent cash flow management is still vital. Careful and timely analysis of dollar

expenditures coupled with rigorous review of money spent against operational tempo will

enable AIRPAC to bring sensible business financial management practices to bear within

the day-to-day decision making process. Cash flow analysis and management is critical to

the success of CNAP in meeting its mission requirements. In order to manage AIRPAC

more like a business and solve data distribution, quality and consistency anomalies, a data

interface (i.e., database system), supporting the AIRPAC business process is required.

This reasoning fueled the motivation for the design of AFAST, a system

prematurely declared operational in the summer of 1995. And this reasoning persisted as

the impetus and motivation to fund NPS to develop and implement AFAST II.

C. THESIS OBJECTIVES

There are four objectives to this thesis. The first objective is to design the Entity-

Relationship model which formally represents the network of relationships among the

various AIRPAC commands which generate aircraft costs. The purpose of this design is

to satisfy user requirements by graphically displaying the database structure, visually

defining the conceptual design which will eventually be refined to yield the logical and

physical structures which correspond to the implemented database.

The second objective is to develop an application, an interface between the user

and the stored data. Recalling guidelines put forth by Nielsen [Nielsen90], the application

should be:

• Easy to learn

• Efficient to use

• Easy to remember

• Generate few errors

• Be pleasant to use

The third objective is a culmination of the first two: implement and test a

prototype using the designed database and application. It is the expectation that this

prototype will be the framework for the database system to be delivered to AERPAC, by

NPS, in September 1997. The fourth and final objective of this thesis is to identify the

commercial off-the-shelf software and hardware requirements necessary to construct a

client/server configuration for AIRPAC's implementation of AFASTII.

D. ORGANIZATION OF THE THESIS

AIRPAC requirements and current system design deficiencies are presented in

Chapter II to provide the reader with the necessary background required to grasp the

importance of the design and implementation decisions which are presented in Chapters III

and IV. Conclusions and recommendations are presented in Chapter V. Source code as

well as glossaries, supplemental tables and charts, and system flow diagrams are contained

in the appendices.

II. BACKGROUND

A. AFAST OVERVIEW

In 1994 "CNAP requested that a detailed and extensive Financial Management

study be conducted to identify, analyze and assess capabilities of existing financial

management systems currently utilized throughout the (AIRPAC) enterprise"

[Boyd94 p. 2-1]. Key findings from the study include:

• Critical data required in the day-to-day decision making process was
limited by availability, currency and accuracy.

• The absence of a Management Information System (MIS) organization
severely hampered the collection and dissemination of relevant data.

• The inability of senior management to effectively monitor the AIRPAC
spending process contributed significantly to the organization being
managed in a reactive, crisis-oriented manner.

The select team of senior naval reservists conducting this study, all with significant

management and business expertise, concluded their report by stating "In order to

manage AIRPAC more like a business, and to implement the Financial Management

Model while solving data distribution, quality and consistency problems, it is

recommended that a data interface be constructed" [Boyd94 p.6-1]. As was presented in

Chapter I of this document the focus of our effort is to improve upon and expand the

capabilities of the "interface", AFAST, designed by this distinguished team. To do so

requires an intimate understanding of the financial processes, methods and variables which

influence the operation of AIRPAC. The sections that follow address fundamental

processes, all which must be captured in the eventual design of the new database.

Specifically, we focus upon in the remainder of this chapter:

• AIRPAC financial management practices.

• Subordinate command reporting procedures.

• Database design requirements.

• Major deficiencies of the current (AFAST) database application.

B. FINANCIAL MANAGEMENT PRACTICES

AIRPAC s operational commitments and financial obligations are extensive.

Responsible for aircraft, aircraft carriers, and air stations and facilities, CNAP must ensure

readiness and operational requirements are met without overspending its annual budget.

Analysis of the annual budget reveals that almost two-thirds of AIRPAC's financial

obligations are destined for the support of aircraft maintenance and aircraft fuel costs.

Collectively these costs fall within the bounds of the AIRPAC Flight Hour Program

(FHP). It was the intended design of the (initial) AFAST application to model the

processes associated with the FHP in order to provide a more timely and accurate estimate

of funds expended. These processes - maintenance, supply, financial, Operational Report

20 (OP-20) allocation and flight hour allocation - collectively establish the bounds of the

database design and define the structure which the database must assume. Their

understanding is paramount to the successful development of the AFAST II database

application.

1. Maintenance Process

The process is initiated with the identification of a failed aircraft part or system

(Figure 1). Maintenance action is begun (at the local level) and documented using the

Maintenance Action Form (MAF). At this early juncture an initial determination is made

as to the level of effort required to correct the maintenance discrepancy.

Maintenance

^

Figure 1. Maintenance Flow Diagram

Options are:

• The aircraft part (hereafter referred to as an assembly) can be repaired locally
(an organizational maintenance effort) and reinstalled, in which case the
discrepancy is corrected, documented on the MAF, and the MAF data entered
into the Navy Aviation Logistics Command System (NALCOMIS) database
(the significance and importance of NALCOMIS will be discussed in section
C). The use of consumable materials (nuts, bolts, rags, cleaners, etc.,) required

to implement the repair are also recorded on the MAF, with these items being
included in the data entered into the NALCOMIS database.

Maintenance requiring replacement of an assembly defined as "repairable."
The failed assembly is removed from the aircraft and forwarded to the local
supply system as "non-ready for issue" (non-RFI). With receipt of the non-RFI
assembly, supply issues an RFI replacement, and this assembly is then installed
into the aircraft. The replaced "repairable" assembly is documented on the
MAF, along with a listing of all maintenance performed to effect the removal
and reinstallation of the assembly. All consumable materials required to
implement the repair are recorded on the MAF, and as in the previous example,
all MAF data is entered into the NALCOMIS database.

Maintenance requiring replacement of an assembly defined as " nonrepayable."
This will be discussed in the Supply Process.

At this stage the maintenance process is completed. It is important to note that

while parts (may) have been exchanged and consumables have been expended, no money

has actually been spent or obligated.

2. Supply Process

The non-RFI assembly (Figure 2) is delivered by the organizational maintenance

activity's supply department to the local Aircraft Intermediate Maintenance Department

(AIMD) or Intermediate Maintenance Activity (IMA) where a determination is made as to

whether or not the assembly can be repaired locally at the AIMD. If repair is feasible at the

AIMD level, the assembly is repaired and returned to the local supply system inventory (in

the case of an AIMD aboard a carrier, if the assembly cannot be repaired locally, the

assembly may be forwarded on to a shore-based AIMD where repair can be

accomplished). In all instances corrective action taken and materials required to effect the

assembly repair are documented on a supplemental MAF, and once again, all data are

entered into the NALCOMIS database. As was the case in the Maintenance process, there

is no money spent or obligated, and the repaired assembly is received into the local supply

system for future (re)issue.

Maintenance

Mm «*£££

Supply

Figure 2. Supply Flow Diagram

Should the repair of the assembly be beyond the intermediate maintenance level

capability, it is considered Beyond Capability of Maintenance (BCM) and the assembly is

sent to an appropriate depot level repair activity. Local supply initiates a stock

replenishment action (requisition) and the non-RFI item is processed through the local

supply activity into the nearest Advance Traceability and Control (ATAC) hub, where

credit for the carcass (the non-RFI assembly) is documented. In exchange for the non-RFI

assembly the local supply system is issued an RFI assembly, which is received into the

local supply system and made available for future issue. Again, no financial transactions

have occurred.

The description of the supply process is complete, however there do exist certain

alternatives available to local supply departments which directly impact costs seen (or not

seen) by AIRPAC. Local supply can forward for repair a non-RFI assembly but elect not

to immediately reorder a replacement. By not reordering, actual maintenance costs as well

as material consumption will remain invisible to AIRPAC. Only when a decision to

reorder is made and a requisition (for a replacement assembly) generated are funds

obligated (see Financial Process).

3. Financial Process

As depicted in Figure 3, once material is shipped from the Wholesale Supply

System (WSS) to a requisitioning activity (i.e., a shore-based AIMD), charges for the

assemblies are forwarded to Defense Accounting Activity which maintains account

balances for AIRPAC and its subordinate commands. For repairable items, a "net charge"

is billed, reflecting credit for turn in of the non-RFI carcass. If the carcass is not turned in

and/or never received at the AT AC (see Supply Process), the requisitioning activity will

eventually be charged for the missing carcass, and, as a result, is now charged the full

price for the repairable assembly. Other debits, such as surcharges and price adjustments,

are also billed to the requisitioning activity (through the Defense Accounting Activities),

which is ultimately notified of the price adjustment via a document called the Summary

Filled Order Expenditure Difference Listing (SFOEDL).

10

Maintenance Finance

Figure 3. Financial Flow Diagram

are It is only when material is procured from the WSS that financial obligations

incurred by subordinate activities and reported to the AIRPAC comptroller. This is done

monthly via the Budget Optar Report (BOR), an official mandated report modified by

AIRPAC to include flight hours, adjustments to obligated funds (i.e., surcharges and price

adjustments) and any other additional information relevant to aircraft cost data. (Note:

the BOR is the basis for official accounting records developed by AIRPAC. AFAST

database does not utilize BOR data, but its output will be compared to BOR data to insure

relative accuracy as well as corroborate data analysis conclusions drawn from the BOR

database).

11

Implied but not yet directly addressed are the time lags which may be associated

with the costs of performing maintenance. An aircraft may have a non-RFI assembly

replaced by an AIMD which, as per the outlined procedure, documents maintenance

performed in the NALCOMIS database. NALCOMIS generates a net-price, assuming:

• Non-RFI carcass will be returned

• Price data in NALCOMIS database is current

• No surcharges will be assessed on the assemblies replaced

• A replacement assembly will be purchased (if applicable)

As will be shown, it is cost data provided by NALCOMIS which are used by

AFAST (and AFAST II). It is quite common to have prices associated with assemblies

change, non-RFI assemblies not returned for months, or replacement assemblies not

immediately (or ever) ordered. Unfortunately, it will be routine for AFAST cost data to

differ from cost data provided by the BOR. (Note: this discrepancy is known to the

sponsor. A determination on how best to resolve the cost anomalies is pending as this

document goes to print. It is anticipated that the ultimate resolution will be incorporated

into the AFAST II follow-on software build.)

4. Operational Report-20 (OP-20) Allocation

Figure 4 summarizes the processes described in the preceding sections and depicts

the flow of funds from OPNAV (N88) through Commander-in-Chief Pacific Fleet

(CINCPACFLT) and into the coffers of CNAP. The flight hour budgeting process is the

basis for granting funds to CNAP activities in support of aircraft operations and

12

maintenance [CNAP86]. The document governing the transfer of funds is the OP-20, a

report which is the basis for the Flight Hour Program Budget. The budget cycle drives the

report promulgation dates and normally three major revisions can be expected during a

fiscal year. The OP-20 report promulgates:

• Budgeted flight hours.

• A delineation of Aircraft Flight Operation (AFO) costs, Aviation Depot Level
Repair (AVDLR) costs, and Aviation Fleet Maintenance costs (AFM) in terms
of a projected average fleet-wide Cost Per Flight Hour (CPH).

• Annual costs for each type/model/series (TMS) aircraft assigned to AIRPAC.

The AIRPAC staff utilizes the OP-20 to assist them in making the allocation of flight

hours to each squadron/wing/aircraft-owning activity, taking into account deployment

schedule, training requirements, etc. An example of an OP-20 report is provided in

Appendix B. When allocation levels have been determined, the AIRPAC Flight Hour

Program Office will "distribute", usually on a quarterly basis, the flight hours via an

OPTAR Grant message to the various squadrons/wings/aircraft-owning activities. This

distribution process creates a "budget" for each squadron, however, actual maintenance

funds (as depicted in Figure 4) are allocated to the supporting CV's and Naval Air

Stations which maintain the books for these squadrons. An example:

AIRPAC allocates VFA-122 1000 flight hours for quarter one of fiscal year 1995.

During the allocation process the AIRPAC staff estimates that, based upon the upcoming

deployment schedule of VFA-122, 600 hours will be flown at NAS Lemoore and 400

hours will be flown while operating aboard the USS Kitty Hawk. Therefore AIRPAC

13

would allocate VFA-122's AVDLR and AFM funds to NAS Lemoore and USS Kitty

Hawk based on the expected levels of flight operations at each installation.

/*-

ESST 1[Depot

ASO

Squtdron Rcq
BcSl

AIMD

■AOMS I

jLH*— AIRPAC
r~ Functions

CINPACFLT m OP-20

Figured Flow of AIRPAC'sFunds

Note: OPT AR grants can be and are frequently changed and reprogrammed as

operations change and the level of support provided to a squadron by an AIMD activity

changes from the initial budget assumptions.

C. SUBORDINATE COMMAND REPORTING PROCEDURES

Aircraft flying hour and maintenance costs are forwarded by subordinate activities

to AIRPAC via two reports: the Aviation Storekeeper Information Tracking System

14

(ASKIT) AFAST report, and the NALCOMIS AIMD Cost Accounting (NACA) extract

program. These reports, designed to support other databases, are processed and artfully

manipulated to output the raw data which comprises the bulk of the AFAST database.

1. ASKIT AFAST Report

The ASKIT system [CNAP93] is designed to assist squadrons with material

requisitioning, requisition tracking, and financial data processing and management.

Provided within the ASKIT system is the semi-automated AFAST report generation

function which outputs bi-monthly the following data:

• Reporting activity

• Report Type (initial report, year-to-date summary, weekly report,
update/change report)

• Reporting period

• For each TMS assigned to the squadron:
• Flight hours flown
• Fuel costs
• Location (Home/Deployed) where flight hours were executed

All aircraft-owning activities submit the report to ABRPAC where the data is

processed and compiled by AFAST for inclusion into the database. The resulting actual

flight hour cost data can then be compared with AIRPAC allocation data and OP-20 cost

figures to document trends and identify expenditure anomalies. A sample ASKIT AFAST

report is provided in Appendix B.

15

2. NALCOMIS AIMD Cost Accounting (NACA) extract program report

The NACA report was developed to track AOM funds using data extracted from

the NALCOMIS database. The report is compiled by AIMDs, forwarded to AIRPAC

monthly, and provides a means of monitoring the cost of assembly requisitions as they are

generated by squadrons and the reporting repair facilities. Originally designed as a tool for

the AIMDs, NACA data is incorporated into the AFAST database where it can be

extracted and used to monitor AVDLR and AFM costs associated with the various type

aircraft assigned to AIRPAC As was the case for the fuel costs and flight hour

expenditures, the maintenance cost data provided by NACA can be contrasted with

AIRPAC allocation data and OP-20 cost figures to document trends and identify

expenditure anomalies. However, NACA cost data is only approximate and assumes that

(non-repairable) assemblies will be returned to the appropriate depot level repair facilities,

and replacement assemblies will be ordered by the applicable supply department. It does

not account for:

• Changes in assembly prices.

• Assemblies that are not ordered.

• Assembly carcasses that are not forwarded to Depot Level Repair Activities.

• Assemblies that are ordered, and later canceled.

(Note: the deficiencies associated with NACA are significant. It is anticipated that

upgrades to AFAST II will be required to correct these inaccuracies by providing

interfaces with other navy maintenance management systems.)

16

A reporting activity's monthly NACA report is received in the form of two ASCII

text files (Appendix B), both of which are used to archive requisition data and record

completed maintenance costs. The NACA report is unique in that a maintenance action

may be initiated (i.e., recorded) in one monthly report, yet work may continue on that

specific action for a significant time period (i.e., 2-6 months). Interim costs and

maintenance action resolution will then be reported via ensuing NACA reports; it is critical

that the database be able to accurately track individual maintenance actions through

completion as well as be able to identify those actions that remain pending.

D. DATABASE DESIGN REQUHUEMENTS

1. Overview

The AFAST II application design has been highly influenced and considerably

constrained by the original AFAST system developed by AIRPAC. Having expended

significant amounts of time, research and funding towards defining and implementing the

system, it was expected the initial solutions garnered by the original effort would be

refined and incorporated (by NPS) into AFAST II. In retrospect, the initial efforts

focused primarily on design goals and high level requirements, paying little attention to

data specifics, application tools, and feasibility of design. The consequence proved fatal as

small-scale commercial database software tools were chosen to implement the database,

and, when coupled with the prevailing hardware architecture, an application with marginal

performance and questionable accuracy resulted. In December 1995 [Gonzalez95] it

became apparent that AFAST needed to be re-engineered; the authors accepted the

tasking and began the bottom-up review and redesign of the system.

17

2. Definition and Scope of AFAST H

The purpose of AFAST II is to receive, process and display aircraft maintenance,

flight hour/fuel and supply system obligation data. The system relies on three sources of

data to populate the database. The first two:

• ASKIT report

• NACA report

are dynamic data sources, submitted at regular intervals by CNAP subordinate commands,

providing a mechanism to capture costs as they are generated by squadrons and ATMDs.

The third source of data is, in the general sense, characterized as static and is reference

data used by the application to process and store the ASKIT and NACA reports. It

includes:

• Squadron data

• Organizational data

• Naval Air Station and Carrier data

• OP-20 allocation data

• CNAP allocation data

The preponderance of the static data is provided by AIRPAC Flight Hour Program Office;

the common thread amongst this data is its constancy. It remains relatively stable during

the course of the fiscal year, changing only if and when subordinate activities (squadrons,

organizations, CVs...) relocate or are decommissioned, or when allocation data is

modified.

18

As previously mentioned the original database was built using a small-scale

software tool which not only impacted the application's utility but limited its availability.

AFAST II overcomes this deficiency by taking advantage of the current AIRPAC

hardware architecture and configuring the application in a client/server environment. The

design provides a cost-effective approach to adding value to the organization (with only

minimal software investment) making a single database of financial information available

to all within the enterprise. The hardware configuration will be such that client and server

processes are executed on separate machines, connected via a network, with one database

server supporting multiple clients. Per tasking from the AIRPAC staff, the database will

be located in a Sun SPARC server, networked to its clients using Novell netware and an

appropriate middleware. Additionally, the physical and security constraints associated

with the location of the server dictate that the database administrator's primary access to

the database (to include metadata and proprietary procedures) be via a client station.

Implementing AFAST II on a client/server architecture greatly increases the

number of primary users. Originally limited to senior AIRPAC staff the new design makes

the system available to:

• AIRPAC middle managers

• Subordinate squadrons, maintenance facilities and staffs

The increase in the numbers and types of users has necessitated the evaluation and

subsequent redesign of the methods used to select and display data. AFAST II departs

from the original system by designing the system with the customer, the Naval Aviator, as

the focal point. Stricken or severely minimized are irrelevant and unfamiliar references to

19

financial management practices. In their place are common and more apparent definitions

of the data elements, and more user-appropriate accesses to the data. The end result is

that a greater number of users will be allowed to easily navigate through the application

and readily access wanted data.

3. Database Design Feasibility

Three elements are addressed in the AFAST II feasibility assessment. These are:

software availability, hardware availability and time constraints.

a. Software Availability

Numerous commercial software application tools were available which

provided both the capability to design views (user applications) and databases. The

AIRPAC staff, in efforts to promote commonality and reduce personnel training costs,

strongly encouraged NPS to develop AFAST II using ORACLE7® as the database

management system (DBMS). It was readily determined that this software would easily

meet the design requirements, however, a delay in funding required the authors to explore

other, interim, alternatives. The software strategy was to procure, as economically as

possible, a software tool which would:

• Produce high quality user applications

• Closely image the programming features provided by ORACLE, with the intent
to transition to ORACLE7® when funding became available.

Based on preliminary research and the analysis of small-scale database design projects

[Wu 96], it was determined that the Delphi Desktop rapid application development tool

20

best met the requirements and still fell well within the research budget constraints.

(Subsequent to the purchase of the Delphi tool and the commencement of database design,

AIRPAC funded the NPS effort; necessary modifications of the software design to meet

CNAP objectives are delineated in Chapter 5, Conclusions and Recommendations.)

b. Hardware Availability

The hardware required to drive the Delphi software ranges from desktop

personal computers (IBM PCs) to workstations (SUN/Sparc). Within the scope of this

thesis, hardware will be limited to an IBM PC (acting as both client and server); given the

portability of the Delphi application all development work will be easily transferred to the

AIRPAC architecture which employs a SUN/Sparc server to support multiple (IBM PC)

clients. Any necessary modifications of the AIRPAC hardware configuration to meet

CNAP objectives are delineated in Chapter 5, Conclusions and Recommendations.

c. Time Constraints

At the time funding was provided by AIRPAC work had already

commenced on the Delphi application. It was determined that this effort would continue

until June 1996, at which time the resulting prototype would begin modification, as

necessary, to be implemented on the AIRPAC architecture. Delivery of the AFAST II,

using ORACLE7® as a DBMS, and configured to utilize a SUN/Sparc server would be

required no later than September 1997. Documentation of this work effort will be

provided under separate cover, as the scope of this document is limited to the

development of the Delphi AFAST II prototype.

21

E. DEFICIENCIES OF CURRENT (AFAST) DATABASE APPLICATION

As stated in the introduction, NPS agreed to not only provide the same

functionality as the current AFAST application, but also correct documented design

deficiencies associated with the system. Based on initial analysis and tests conducted by

NPS (and verified by AIRPAC), the following seven deficiencies can be classified as major

and must be corrected in AFAST II.

1. Absence of Documentation

There exists minimal documentation which defines:

• Design decisions

• Algorithms and procedural functions

• Database model

• Domain restrictions

The scarcity of design documents has slowed AIRPAC s ability to verify data accuracy

and rectify errors in the original application. The nonavailability of documentation has

also impacted AFAST II design efforts in that there does not exist a requirements

document which directs the manner and method that complex calculations and business

rules will be implemented. Significant energy has been devoted to revisiting requirements

with AIRPAC, as "Incomplete, misinterpreted or unrealistic requirements are many times

the root cause of.. .project failures."[Pressman92]

22

2. Squadron Deployment Restrictions

The original design assumed, incorrectly, that all squadrons assigned to CNAP

deployed to carriers. Additionally, it was assumed a squadron could deploy to only one

carrier during the course of a fiscal year. The impact of these design flaws is significant.

Costs generated by squadrons which deployed to sites other than carriers, or which

deployed more than once during a fiscal year, could not be accounted for accurately in the

database. The result was inaccurate cost estimates at all levels throughout AIRPAC

subordinate activities which supported deploying squadrons.

3. Squadron Detachments

The AFAST application is unable to accurately track costs associated with

squadrons which deploy detachments. Flight hours flown and costs incurred by the

detachments are entered into the database using inconsistent and irreconcilable processes,

none of which have documentation to support their use. The effect of this error is, once

again, global, affecting not only the specific squadrons but the air stations and carriers

which support them.

4. Squadrons with more than one type aircraft

The database design in the current system prohibits data being graphically

displayed for squadrons which have more than one type/model/series (TMS) aircraft. The

source of the deficiency is embedded in the database model; efforts to correct this

deficiency require a total redesign of the database. The capability to graphically display

23

data was one of the highest priorities of the original system, and remains at the top of the

list for AFASTII.

5. Database redundancy and design inefficiency

To overcome some of the early design problems encountered with the original

database, the decision was made to add autonomous entities and relationships (i.e., tables)

to the model rather than redesign, normalize and otherwise make more efficient the

current database model. The end product is now a database which requires redundant

data input, utilizes significantly more storage space than required, and processes data at a

level significantly less than that which is acceptable [Lauff96].

6. Processed data accuracy

Minimal effort has been put forth on the part of AIRPAC to verify that stored

procedures and client-side data calculations are accurate. Preliminary testing by NPS

during the development of the AFAST II prototype suggests that significant errors exist in

the computation and subsequent storage of processed data. As previously mentioned,

little documentation exists to verify or validate the performance and results of the current

system.

7. Graphical User Interface design and implementation

The current AFAST application is recognized by its use of single windows, clumsy

and contusing procedures associated with accessing data, and the absence of

standardization between individual application windows and between the application itself

24

and human-computer interface standards recognized and implemented by the computer

industry. The task here was to redesign the user views from the ground up and employ

accepted evaluation and usability guidelines in the design of the AFASTII user views.

25

26

III. DATABASE DESIGN

The development of AFAST II adhered to the guidelines put forth by Kroenke and

Dolan [Kroenke88] who recommend utilizing a two-part design process when

constructing a database system. The two parts are:

• Development of the database design

• Development of the application design

This chapter focuses on database design, specifying the specific constraints,

requirements and design decisions which culminated in the development of the entity-

relationship model, the blueprint of the database structure. It is necessary, however, to

precede this unveiling with a brief overview of basic database terminology and

fundamentals as these will be referenced throughout the remainder of this document.

A. TERMINOLOGY

1. Database

A database is a collection of related data possessing the following implicit

properties [Elmasri94]:

• A database represents some aspect of the real world, oftentimes referred to as
the miniworld. Changes to the miniworld are reflected in the database.

• A database is a logically coherent collection of data with some inherent meaning.
A random assortment of data cannot correctly be referred to as a database.

27

A database is designed, built and populated with data for a specific purpose. It
has an intended group of users and some preconceived applications in which
these users are interested.

A database must have direct access to a storage medium to enable processing, and,

implemented with a suitable storage medium, has the capability to manage large integrated

data structures in a shared multi-user environment. Physically the database consists of

tables. However, the data is structured with only limited consideration given to table

boundaries. Important objectives in the ultimate design of the database are the

achievement of an extremely flexible level of interaction between small data items

(attributes) resident in the tables, and a minimization of redundancy. When designed well,

the database allows concurrent processing, maintains consistency of data, and supports

testing and maintenance[Maciaszek89].

2. Database Management System (DBMS)

A DBMS is a collection of software programs that enables users to define,

construct and manipulate databases for various applications. Defining a database involves

specifying data types and domains for the data to be stored. Constructing the database is

the method of storing the data on some specified storage medium that is managed by the

DBMS. Manipulating a database encompasses the following:

• Querying the database

• Updating the database

• Generating reports from selected data

28

3. Entity-Relationship Diagram

"The cornerstone notation for data modeling is the entity relationship diagram"

[Pressman92]. It is central to the conceptual design, providing a graphical representation

of:

• Entities - "things" that can be distinctly identified. Any distinguishable
object, real or abstract (i.e., squadrons, budgets).

• Attributes - particular properties associated with entities (i.e., squadron name,
fiscal year).

• Relationships - an association among entities (i.e., squadrons deploy on carriers,
NAS's submit maintenance transactions reports).

First introduced in 1976, the goal of entity-relationship modeling is to deliver an

abstract, nonredundant and unified representation of the data of the application. With this

model the network of relationships among the entities and their attributes can be clearly

and explicitly expressed [Fidel89].

An uncomplicated symbol format is used to construct the entity-relationship model

(Figure 5). A rectangle represents an entity. Lines with a "diamond shaped box" serve to

connect entities, while the diamond symbols represent relationships between entities.

Many different types of relationships exist, only two of which are of concern within the

scope of this database application:

• one-to-many - represented by 1 :M. Ex: A squadron can have
many reports, however a report can have only have one squadron.

• many-to-many - represented by M:N. Ex: A squadron can deploy to many
carriers, and a carrier can have many squadrons.

29

Figure 5. A simple Entity-Relationship Diagram

Using standard database design algorithms the entity-relationship model can be

transformed into the relational database schema, in a general sense a collection of tables

with each table uniquely representing each entity and relationship (Figure 6). Rows in the

table represent a collection of related data values. Each row in the table is called a tuple,

and is a representation of the facts about a particular record contained in that table. The

table name and column names are used to aid in interpreting the meaning of values in each

row of the table. The column names specify how to interpret the data values in each row

based on the column each value is in. All values in a column are of the same data type

(i.e., integer, character, date).

Name UIC Service Mission Type
VFA -137 R12345 USN Tactical VFA
VA-52 R54321 USN Tactical VA

Figure 6. A simple Relational Table

30

B. AFAST n ENTITY-RELATIONSHIP MODEL DESIGN

A database design process must be conducted within the framework of the

enterprise's strategic plan. One of the aims of strategic planning is to determine the

strategy for the development of a new information system. The high level strategy

associated with the development of the AFAST II database was quite simple:

• Review the database structure of the original database (AFAST)

• Identify deficiencies with the current database

• Revise the database structure to overcome deficiencies

1. AFAST H Data Requirements

An in-depth review and analysis of the original database was not possible as system

documentation was not available or was incomplete. A thorough survey of requirements

documents and interviews with domain experts was conducted to specifically determine

the requirements and clarify requirements that were misinterpreted and implemented in the

original AFAST application. From this initial data collection effort the following

specifications for the AFAST II database were validated and/or incorporated:

• Allocation data for squadrons, CV's and NAS's from the OP-20 report and
CNAP is to be displayed.

• Data will be displayed in three different time periods: monthly, quarterly, yearly.

• Maintenance and flight hour cost data will be displayed for carrier air wings,
squadrons and aircraft TMS's.

• Summary maintenance cost data will be displayed for NAS's and CV's. Data
will be able to be subdivided to show costs generated by specific squadrons and
tenant commands (organizations) attached to the specific CV or NAS.

31

• A summation view of all maintenance and flight hour cost data will be provided;
display will correlate all costs incurred by CNAP.

• Specific maintenance costs will be displayed: These include categories AVDLR
and AFM, and subcategories Engines, Airframes, Avionics, Miscellaneous, and
Other (to be defined).

• Data will be displayed both graphically and in tables. Methods of display for
specific views to be determined by designers.

2. AFAST H Entities

Once the requirements were collected the actual construction of the Entity-

Relationship model began. Identified as entity types were the following:

• Squadrons

• Squadron Detachments

• Aircraft Type/Model/Series

• Commander, Naval Air Forces Pacific

• Naval Air Stations

• Carriers

• Carrier Air Wings

• Fiscal Year Budget (OP-20 Report)

• Fuel/Flight Hour Reports (ASKIT)

• Maintenance Transaction Reports (NACA)

• Organizations

32

It was noted early in the design phase that carrier's and naval air stations, within

the scope of the database specifications, were identical, that is they shared all the same

attributes. Given this condition it was necessary, in order to eliminate redundancy and

optimize the design of the model, to group together carriers and NAS's into one entity.

This action became the first of many significant departures from the design of the original

model. As will be seen in the discussion of relationships, this restructuring provided the

AFASTII database with greater flexibility and significantly more capability.

In December 1995 the AIRPAC AFAST working group determined that, at the

present time, it was not a requirement to be able to display squadron detachment data.

Rather, the costs generated by the detachments would be rolled into the costs of their

parent squadrons. The exceptions to this new specification were detachments from VQ-5

and VRC-30. These detachments would be modeled as squadrons with only their

deployed costs being presented on their individual data page. Costs which these

detachments incurred while located at their home station (i.e., NAS North Island) would

be presented as part of the parent squadron data.

One last entity was deleted from the original list of ten, that being Commander,

Naval Air Forces Pacific (CNAP). After analyzing the attributes associated with each

entity type and the relationships which existed between the entities, it was determined that

CNAP views and associated data could be generated by summing data resident in the

NAS/CV and squadron entities. The specifications associated with each entity are

presented below:

• Carrier Air Wings - specifies air wings in the AIRPAC chain of command.
CNAP requirement exists to display aircraft cost data by airwing
grouping, this entity is the mechanism which enables that action.

33

• Fiscal Year Budget - defines amount of funding to be provided to CNAP to
support flight hour and-maintenance costs for each type aircraft. Funding levels
vary depending on type service (USN or USMC) and mission (Tacair, Support,
Fleet Readiness). Data is provided by OP-20 report.

• Fuel/Flight Hour Reports - reported by squadrons and other CNAP commands
who are custodians of aircraft. Summarizes flight hours flown and fuel costs
during a specific reporting period for each type aircraft owned by the squadron.
Data is currently provided via the ASKIT report.

• Maintenance Transaction Reports - submitted by CV and NAS AIMD facilities
who participate in the NACA program. A monthly report which details
maintenance performed on aircraft by squadrons, CV's and their tenant
commands, and NAS's and their tenant commands.

• NAS/CV - specifies current NAS's and CV's in the AIRPAC chain-of-
command. CNAP requirement exists to display aircraft cost data by specific
NAS or CV. This entity is the mechanism which enables that action, as well as
enabling the tracking of costs generated by NAS and CV tenant commands
which do not own aircraft.

• Organizations - tenant commands located onboard NAS's and CV's which
generate costs associated with the maintenance of aircraft. These costs are
reported in NACA and are eventually equated to specific squadrons and TMS's
in order to determine aircraft operational costs.

• Squadrons - specifies current Squadrons in the AIRPAC chain of command.
CNAP requirement exists to display aircraft cost data by specific squadron.
This entity is the mechanism which enables that action, as well as enabling the
presentation of costs associated with each type aircraft flown by a squadron.

• Type/Model/Series - delineates current types of aircraft CNAP is funded to
operate and maintain as per the OP-20. CNAP requirement exists to display
individuals as well as summary data for TMS costs.

3. AFASTII Entity Attributes

Concurrent with the entity resolution activity was the defining of attributes which

were associated with each entity type. In most cases the attributes were determined by

reverse engineering the original AFAST application (entities and their attributes are

34

presented in Appendix A). However there do exist certain unique entity attributes whose

purpose requires description.

• ID_ TMS (in the TMS entity) - The purpose of this attribute is twofold. The
first is to serve as aggregate for the following attributes within the TMS entity:
TMS, Service, Mission and Fiscal Year. The second is to act as the key, the
single attribute whose value is used to identify uniquely a record from all other
records belonging to the particular entity, and whose function is to permit the
accessing of other tuples stored in other tables. Use of the aggregate key saves
storage space, reduces redundant data and improves performance by permitting
other tables to use the aggregate attribute as a foreign key [see Elmasri94]
rather than having to use four previously mentioned attributes.

• ID_ASKIT/ ID_NACA (Fuel/Flight Hour Entity/Maintenance Transaction
Entity) - The purpose of this attribute is to function as a key for the records in
each of the entities. It was determined early in the analysis of data contained
in both the ASKIT and NACA reports that the reports did not provide a simple
and consistent method by which each report could be identified, stored and
processed uniquely. The IDASKIT and IDNACA attributes accomplish this
by assigning a unique integer value to each report. In essence the basic nature
of these attributes is, simply, to facilitate record keeping.

4. AFAST H Relationships

The relationships used to produce the AFAST II model and link the entities are

simple, straightforward and easy to resolve. A total of twelve different relationships are

employed to link the eight entities; each relationship with its own unique characterizations

or criteria which are used to strengthen and enhance the integrity of the E-R model. The

dozen relationships created to support the E-R model (Figure 7) can be classified

according to three criteria: degree, connectivity, and membership. The criterion of degree

refers to the total number of entities linked by, or participating in, the relation. In all

cases but one, the degree of AFAST II is two; the one exception is degree three, that is,

there are three entities which are linked by one relationship.

35

FY Budget

NACA

ASKIT

M

Figure 7. AFAST H Entity - Relationship Diagram

36

According to the criterion of connectivity the options available are singular and

multiple relationships. Singular relationships are not employed in the AFAST II model; as

previously discussed the relationships between the entities will either be 1 :M or M:N.

With regard to the membership criterion, there are two types of participation

constraints which are illustrated by example. In the AIRPAC paradigm, since all carrier

air wings must have squadrons, then it can be said an air wing can only exist if it

participates in the squadron/cvw relationship (Figure 7). The participation of carrier air

wing in the squadron/cvw relationship is called total, meaning that every entity in "the

total set" of carrier air wing entities must be related to at least one squadron entity via the

squadron/cvw relationship. Again referring to Figure 7, it is not the case that every

maintenance transaction report references an organization, so the participation of

organization in the spends funds relationship type is partial, meaning that some or "part of

the set of organization entities are related to a maintenance transaction report via

spendsfunds, but not necessarily all. The specifications associated with each relationship

are presented below:

• Allocates - This relationship is used twice. In the first instance it connects the
entities Fiscal Year Budget and NAS/CV, in the second instance it links Fiscal
Year Budget with SQUADRON and TMS. In the first case the relationship is
of degree two and requires total participation of both NAS/CV and Fiscal Year
Budget. Being a multiple M:N relationship requires that when the standard
database design algorithms are used to transform the entity-relationship model
into the relational database schema (Figure 8), this relation will become a table
with its own unique attributes. This relation hold allocated maintenance funding
data for the FY BUDGET-NAS/CV relation. The second instance of Allocates
is the only use of a relationship which has degree greater than two, in this case
the degree is three. The need exists to establish a three-way relationship that
binds together FY BUDGET, SQUADRON and TMS. This enables us to
extract from the model for each squadron the TMS's allocated to it and the
funding available to support each TMS. As was the case with the first instance
participation is total, each SQUADRON and TMS having to be allocated funds

37

in order to exist as an entity instance. Being a M:N relationship, this relation
will become a relational table with its own unique attributes. In this case the
relation stores allocated maintenance funding data for FY BUDGET-
SQUADRON-TMS.

Assigns_costs_to - This relationship is used on three occasions: in the first
instance it connects the MAINTENANCE TRANSACTION REPORT and
SQUADRON entities; in the second instance it connects the MAINTENANCE
TRANSACTION REPORT and TMS entities; and in the final instance it links
FUEL/FLIGHT HOUR REPORTS with TMS. In all three cases the
relationship is of degree two and requires total participation of the
MAINTENANCE TRANSACTION REPORT and links FUEL/FLIGHT
HOUR REPORTS. Being a multiple 1 :M relationship requires that when the
standard database design algorithms are used to transform the entity-
relationship model into the relational database schema (Figure 8), this
relationship's attributes will be combined with the attributes of the
MAINTENANCE TRANSACTION REPORT and FUEL/FLIGHT HOUR
REPORT entities. However, in this case there are no attributes associated with
the relationships, so there is no requirement to merge attributes into these
tables.

Deploys - This relationship is used once. It links NAS/CV and SQUADRON
entities. The relationship is of degree two and requires total participation of the
SQUADRON entity. Being a M:N relationship, this relation will become a
relational table with its own unique attributes. Deploys identifies specific
SQUADRONS which are which are assigned to specific NAS's and CV's.

References - This relationship is used once, it links NAS/CV and
FUEL/FLIGHT HOUR REPORT entities. The relationship is of degree two and
requires total participation of the FUEL/FLIGHT HOUR REPORT. Being a
multiple 1 :M relationship requires that when the standard database design
algorithms are used to transform the entity-relationship model into the
relational database schema (Figure 8), this relationship's attributes will be
combined with the attributes of FUEL/FLIGHT HOUR REPORT entity.
However, in this case there are no attributes associated with the relationship, so
there is no requirement to merge attributes into the FUEL/FLIGHT HOUR
REPORT table.

Relatedto - This relationship is used once. It links ORGANIZATION and
NAS/CV entities. The relationship is of degree two and does not require total
participation of either of the two entities. Being a M:N relationship, this
relation will become a relational table with its own unique attributes. The
relation identifies specific organizations which are permitted to spend the
allocated funds of specific NAS's and CV's.

38

•

Spends funds - This relationship is used once. It links ORGANIZATION and
MAINTENANCE TRANSACTION REPORT entities. The relationship is of
degree two and does not require total participation of either of the two entities.
Being a multiple 1 :M relationship requires that when the standard database
design algorithms are used to transform the entity-relationship model into the
relational database schema (Figure 8), this relationship's attributes will be
combined with the attributes MAINTENANCE TRANSACTION REPORT
entity. However, in this case there are no attributes associated with the
relationship, so there is no requirement to merge attributes into
MAINTENANCE TRANSACTION REPORT table.

Submits - This relationship is used twice: in the first instance it links the
MAINTENANCE TRANSACTION REPORT and NAS/CV entities; and in the
second instance it links FUEL/FLIGHT HOUR REPORTS with
SQUADRONS. In both cases the relationship is of degree two and requires
total participation of the MAINTENANCE TRANSACTION REPORT and
links FUEL/FLIGHT HOUR REPORTS. Being a multiple 1 :M relationship
requires that when the standard database design algorithms are used to
transform the entity-relationship model into the relational database schema
(Figure 8), this relationship's attributes will be combined with the attributes of
the MAINTENANCE TRANSACTION REPORT and FUEL/FLIGHT HOUR
REPORT entities. However, in this case there are no attributes associated with
the relationships, so there is no requirement to merge attributes into these
tables.

Squadron/CVW - This relationship is used once. It links CVW and
SQUADRON entities. The relationship is of degree two and requires total
participation of the CVW entity. Being a M:N relationship, this relation will
become a relational table with its own unique attributes. The relation identifies
specific SQUADRONS which are assigned to specific CVWs.

39

Ofr

ppop\[leuopupH n XSV.IV '8 wngij

D O Q C

C. AFAST H DATABASE IMPLEMENTATION

This section discusses the criteria utilized to select the database management

system (DBMS), the general purpose software system that facilitates the process of

defining, constructing and manipulating databases for various applications [Elmasri94]. It

was known from the outset that the ultimate DBMS to be employed by the AFAST II

operational system would be ORACLE7®; AIRPAC had specified that, based on

personnel, training and licensing considerations, an ORACLE database application would

be preferred.

AFAST II prototype development was not required to utilize ORACLE, and given

this latitude we elected from the outset to use commercially available software tools which

would allow us to pursue a proof of concept design, while at the same time minimize

developmental costs. Guiding our choice of software tools were the following criteria:

• Software functionality should be similar to that of Oracle. Experience
gained and lessons learned during prototype development should be
readily transferable and applicable to the operational database
development and implementation.

• Software should posses capability to support a large multiuser database; it must
be able to operate in a client/server environment.

• DBMS should have the capability to control redundancy so as to prohibit
inconsistencies among the data. Controls should be automatically executed and
enforced.

• DBMS should provide a security and authorization subsystem, restricting user's
access to data.

• DBMS must have the capability to represent complexities among the data as
well as retrieve and update related data easily and efficiently.

• DBMS must provide capabilities for defining and enforcing integrity and
referential integrity constraints. While integrity constraints would be identified

41

by the designer during database design, the DBMS would be required to enforce
these constraints automatically during system runtime.

Finally, the DBMS must provide facilities for recovering from hardware or
software failures.

After testing and analysis of three similarly priced software products the Borland®

Interbase® Server was selected for the development and implementation of the AFAST II

prototype. All three products tested, in varying degrees, satisfactorily emulated the

procedures and functionality of ORACLE7®. The deciding factor was the software's

ability to handle complex relations. Borland® Interbase® allows the designer to create

M:N relationships and execute, without complication, third degree relationships.

Borland® Interbase® provided another significant advantage in that it was the

database utilized by Borland® Delphi™, the application package which was chosen to

design the graphical user interface. In general, the software provides a tightly integrated

set of client/server tools necessary for building, testing and deploying a client application

earmarked to interface with a remote server. Features which made Interbase® our choice

were:

Use of stored procedures and triggers

Effective referential integrity procedures

Immediate recovery from system failure

Significant security and access properties

1 Scalability

42

The last feature, scalability, is key. AIRPAC has expressed a desire to integrate

the AFAST II prototype into their architecture as soon as feasible with the expressed

intent of validating data output by the current AFAST system against the AFAST II

(prototype) application, with AFAST II being the accepted standard of accuracy.

43

44

IV. AFASTII USER INTERFACE DESIGN

A. INTRODUCTION

This chapter focuses on the second part of the Kroenke and Dolan design phase:

the development of the application design. The primary goal of the application design is

to create a sensible, comprehensible, memorable and convenient semantic organization

relevant to the user's tasks [Shneiderman93]. Three distinct application formats are

available for developing and implementing the design:

• command languages

• direct manipulation

• menu selection

B. COMMAND LANGUAGES AND COMMAND LINE INTERFACES

Command languages, which originated with operating system commands, are

distinguishable by their immediacy and by their impact on devices or information. Users

issue a command and watch for effect. If the result is correct the next command is

entered, if not, some other strategy (i.e., reissue command, error recovery) is adopted. "In

general commands are brief, transitory and produce an immediate result on some object of

interest [Shnedierman93]."

A command line format requires the user to enter a command, or series of

commands, when prompted by the operating system. These commands must be

understood and retained by the user, who oftentimes is required to memorize hundreds of

45

commands, flags, syntactical formats and syntax variations. Command languages and

command line interfaces are of great utility when the users are knowledgeable and quite

comfortable with the task and the user interface application. Within the scope and

framework of AFAST II it is an invalid assumption to suggest that even the most frequent

user would be knowledgeable and comfortable with the database query languages which

would be used as the basis for the command language interface. Therefore other

application formats must be considered.

C. GRAPHICAL USER INTERFACES

The benefit of graphical user interfaces (GUIs), when compared to command

languages and command line interfaces, is that the representation of the miniworld may be

closer to the more familiar structure in which the user functions. Making use of the GUI

presents to the designer opportunities, in the case of AFAST II, to better describe query

formulation and relationships through the use of proximity, containment or color coding.

McCormick emphasizes the potential of GUIs when he states: "Visualization is a method

of computing. It transforms the symbolic...enabling [users] to observe their simulations

and computations. Visualization offers a method for seeing the unseen. It...fosters

profound and unexpected insights [McCormick87]."

1. Direct Manipulation

A direct manipulation interface is one where users perform action directly on

objects. This is in contrast to interfaces, such as the command line interface, where the

46

users indirectly specify actions, parameters and objects through language. A direct

manipulation interface has the following characteristics [Mayhew92]:

• Continuous representation of objects.

• Physical actions or label button presses in place of command languages.

• Rapid incremental reversible operations with immediate, visible results.

Direct manipulation has distinct advantages over other dialog styles. These include

[Shneiderman93, Mayhew92]:

• Easy to learn and remember - Once a user becomes aware of the analogies to
manipulate objects in space and fluent in the uses of the pointing device, then
even functionally complex applications become relatively easy to learn.

• What you see is what you get (WYSIWYG) - Direct manipulation interfaces
are truthful and, as the name implies, direct, permitting the user to concentrate
on the task rather than on the computer system syntax. Interaction is more
comfortable for the user, promoting greater efficiency and less errors.

• Flexible. Easily reversible actions - If the user did not intend to select an
object, one quick click of the mouse deselects or reverses the unplanned
action. Users experience less anxiety because the system is comprehensible
and so easily reversible.

• Provides instant visual feedback - When the mouse button is depressed to
. execute an action, the results are shown immediately on the screen. When the

application involves moving around the screen, users get direct, visual
feedback while the object is being moved.

• Exploits human use of visual-spatial cues - Users rely on visual information and
are usually faster in processing a picture or diagram than a verbal description
of the same object. Direct manipulation exploits this human ability.

The key to the successful development and implementation of a direct

manipulation interface is the design of a stable and true representation of the miniworld.

47

When the interface is constructed well "the user is able to apply intellect directly to the

task, the tool itself seems to disappear" [Rutkowski82].

2. Menu Selection

Menu selection is appealing because it can significantly reduce training and

memorization requirements placed upon the user. This application format is effective

when users have little computer expertise, use the system intermittently, are unfamiliar

with the application terminology or need assistance in structuring their decision making

process. Contrasted with the command language format, the menu format is much simpler

for a new user to learn. "The simple menu provides the user with an overall context and is

less error prone than the command line format" [Pressman92].

Design issues for menu systems can be divided into five areas. These include

[Mayhew92]:

• menu structure

• menu choice ordering

• menu choice selection

• menu invocation

• menu navigation

a. Menu structure

When a collection of items grows and becomes too difficult to maintain

under intellectual control, people form categories of similar items. Some collections can

be partitioned easily into mutually exclusive groups with distinctive identifiers

48

[Norman91]. This technique, known as multidimensional scaling, produces sets of items

that are representative of how users view relationships between items, and is often

considered a logical way to categorize items in a menu system.

b. Menu choice ordering

Once a menu structure is resolved and the items that will appear on each

menu screen have been determined, the designer is still confronted with the question of

ordering for the items on each menu screen. Ordering schemes include:

• Natural sequence (i.e., time, numeric, physical properties such as weight)

• Alphabetic sequence

• Most frequently used first

• Most important first

Mayhew recommends: "Order menu choice labels according to convention, frequency of

use, order of use, categorical or functional groups and/or alphabetical order. If no other

ordering scheme lends itself well to the menu choices, then alphabetic is better than

random ordering, especially for high-frequency...users" [Mayhew92].

c. Menu choice selection

Numerous selection tools are available for implementation by the

designer. The most common and accepted standard for manipulating menus of

applications which incorporate graphical user interfaces is the mouse. Alternate

selection means, such as keyboard selection codes (i.e., tab and arrow keys), should

49

also be used in the application; frequent users may prefer entering commands via the

keyboard and are able to execute actions faster than by pointing with the mouse.

d, Menu invocation

In most menu systems, the top level menu is permanently visible in some

reserved area of the screen. Newer menu systems have pop-up, embedded or user-

invoked menus, in which the user must initiate some action (e.g., click the right mouse

button) in order to display the menu. The use of pop-up and embedded menus allows

designers to provide detailed information to the user without sacrificing screen real estate

since the menu exists only in a temporal state. The major drawback to the use of menu

invocation is the requirement placed upon the user to know what functions are available

through the menus, and remembering how to invoke the correct menu.

e. Menu Navigation

Enabling the user to comfortably transit through the application is

accomplished by a number of menu structural design considerations. These include:

• Conventional and standardized functions available on all menu screens.

• Consistent characterization and employment of functions on all menu screens
(e.g., return always returns the user to one level above the present location).

• Use of labels and place markers as navigational aids in menu systems.

• Employment and consistent utilization of menu types (pop-up, embedded,
cascading), dialog boxes and dialog box controls (buttons, form fillin, fields,
scroll bars).

50

Backward navigation; it should always be possible to return quickly from any
menu back to the main menu, as well as back up one level at a time.

D. APPLICATION DESIGN AND IMPLEMENTATION

1. Development Process

The user interface is one of the most problematic components of a database

system. Interface design is a matter of compromise and trade-off. The designers want

robust functionality but require a simple, unclouded interface. An overall objective is

consistency across all aspects of the interface, but this must be tempered against the

requirements of optimizing individual operations. The designers strive for ease of use and

ease of learning, employing various methods and techniques to effectively manage the user

interface design and help make good design decisions for a given product based on its

specific set of end users.

The methods and techniques consist of design tasks applied in a specific order at

specific milestones in the database development. These tasks are:

• Scoping

• Functional Specification

• Design

• Development

• Testing/Implementation

Scoping and Functional Specifications are summarized in the preceding chapters and

defined in the following documents:

51

AFAST System Design Document dtd November 1995

AFAST Functional Description dtd November 1994

NPS AFAST Research Proposal dtd March 1996

Further testing and verification of the database queries of AFAST II is to be

conducted following the completion of this document. The design of the AFAST II

database and application interface were our prime objectives for this thesis.

There are three principal processes associated with AFAST II:

• Casual user interface; reading the database (Figure 9).

• Expert user interface; reading/writing to the database.

• Graphics generation.

AIRPAC Button
(UcrApp)

NASorCVB.il»«
(UerApp)

CVW Button
(UerApp)

Squadron Button
(UcrApp)

NAS or CV Dtadot Box
(UerApp)

AIRFACfbro
(UerApp)

Orfnnltatton Fbrm
(UerApp)

TVS Button
(UcrApp)

Figure 9. Data Flow Diagram for Casual User Interface

For AFAST II the translation of processes into applications is one-to-one, with

each application defined by its own specifications, detailing how entities, attributes,

relationships and queries are to be presented. Once the applications are determined and

52

defined, the search for a software tool which will enable the development of the

application can begin. As stated in Chapter III, a number of factors played critical roles in

the choice of the application development package. Cost, functionality and compatibility

with the current ATJRPAC architecture were those conditions which directly influenced the

decision to choose Borland™ Delphi™ as the software development application.

Delphi's integrated development environment provides a number of tools for

creating user interfaces. Using Delphi, we created the visual elements quickly, and were

able to easily conform to the guidelines associated with the development of menus and

direct manipulation interfaces. Additionally, the product enabled us to create a client

application that was self contained and totally separate from the database. This will allow

a smooth transition from Interbase to Oracle without making any changes to the

application interface.

The scope of this document details only the design and development of the casual

user application. The remaining applications design efforts will be chronicled in follow-on

documentation [NPS96].

2. Menu Selection Methodology

Central to the application development is the use of standard window functions

designed to assist the user in navigating through the interface. These functions are:

• Menu bar

• Command key equivalent (shortcut keys) to menu bar commands

• Toolbar

53

Most casual users are familiar and comfortable with menu bar and shortcut keys as

both are greatly utilized in modern windows applications. The incorporation of a Toolbar

into the application provides users with an alternate, more efficient means to navigate to

the more frequently used queries and operations.

a. Menu bar and Command key equivalents

The menu bar is permanently located at the top of all AFAST II windows.

It provides the user ready access to the following major menus (Figure 10):

• File

• Edit

• Forms

• Options

• Window

• Help

Figure 10. AFAST H Menu Bar and Toolbar

When the File menu option is selected, a cascading menu is generated which

provides the user with the following options: close the active child window, print the

54

active child window, access the Printer setup window and enter the desired printer

configuration, or exit the application. The File menu option is regularly utilized in most

commercial windows applications. The use of this option by AFAST II presents the user

with familiar and consistent commands which are readily understood and easily invoked.

Selecting the Edit menu option generates a cascading menu which provides the

user with the capability to copy the active child window in bitmap format to the clipboard.

The Edit menu option is also found in most commercial windows applications, and its

employment in AFAST II provides the same benefits as does the File menu option.

The third menu option available to the user is Forms. When it is selected a

cascading menu is brought forward, displaying various major command categories that are

available for display. These are: AIRPAC, NAS, CV, CVW, Squadron, and TMS. This

menu may be utilized by the user when the toolbar is hidden or if the user prefers to use

shortcut keys. Selection of a command category, such as Squadron, performs the same

task as pressing the button Squadron on the toolbar, thus generating a dialog box. Also

included in the Forms menu option is the category Graphs. This will allow the user to

navigate to the graphics application.

Selection of the Options menu option permits the user to modify application

default conditions. When selected a cascading window is opened with four items: Period,

Late Report, Exceptions, and Toolbar. Period allows the user to modify the time frame

used in querying the database. Late Report identifies all commands delinquent in

submitting ASKIT or NACA reports. Exceptions allows the user to set cost variance

thresholds for specific type commands (i.e., NAS's). The last option, Toolbar, enables the

user to display or hide the toolbar.

55

The Window menu option provides the following functions: Tile, Cascade,

Arrange Icons, Close All. AFAST II provides significant improvement over AFAST

through the use of a multiple document interface (MDI). Because AFAST is a single

document interface (SDI), it only allows the user to display one set of queried data, where

AFAST II generates a new child window upon each user query. AFAST II provides the

user the capability to compare side-by-side queries or revisit an old query by simply

arranging windows.

The Windows menu option transfers to the user the capability to manage the child

windows. Tile divides the screen into equal parts, giving each window part of the visible

screen. If three windows are open and tile is selected, each window will be given one-

third of the screen, with the screen being partitioned horizontally. Cascade places all child

windows in a cascading fashion but in such a manner that the window legend is visible and

that a window can be selected by the mouse to be brought to the forefront of the screen.

Finally, Close All closes all open child windows.

The last menu option is Help. Selection of this item reveals a cascade menu with

three functions: Index, Search and About AFAST. When implemented they are designed

to provide access to form fill-in menus which will enable the user to query the help file and

receive assistance as required. About AFAST currently provides the user with version

information and designer data.

b. Toolbar

The purpose of the toolbar is to provide the user with a rapid means to

access the various major command categories (AIRPAC, NAS, CV, CVW, Squadron,

56

TMS) and graphics application. The use of icons offers a natural representation of the

task objects and actions (i.e., direct manipulation), while at the same time presenting an

alternative interface for the high frequency, expert user. Individual icons present images

commonly associated with the various categories (e.g., a carrier silhouette represents

CV's) with associated text which amplifies the icon image. The buttons are given color

and three dimensional shading to make them visually and conceptually distinct from each

other and the remainder of the interface. The toolbar buttons perform the same functions

associated with their Forms menu option counterparts. When selected each button will

navigate the user through a selection process which yields specific data for the major

command type selected.

3. Child Window Form Descriptions

The general windows designs used to display data (Appendix C) are guided by the

AIRPAC desire to have AFAST II resemble, as much as feasible, the current AFAST

system. Figure 11 displays a typical windows data display for a squadron. The tabular

format is standard whether the data being displayed represents AIRPAC, an NAS, a CV, a

CVW, a Squadron, or a TMS. Specific columns and rows may remain empty or be

deleted from the form entirely if the data for the command is not applicable (e.g., CV's

and NAS's are not allocated flight hours or fuel dollars, these data fields are blank on their

respective windows). Descriptions of each window are provided below. The data flow

diagram, which delineates the path which must be navigated to access each window, is

provided in Appendix C.

57

Fiscal Year1995 VI-A-Z; i
Begin Date: 10/1/94

End Date:9/30/95

Allocated Executed
Allocated
Balance

OP-20
Should
Cost

OP-20
Executed
Delta

VARto
Should
Cost

AVDLR$ 4,028.008 4,028,008 9.458,658 5,430,650 57.4

AFM$ 711.406 711.406 3.195.666 2.484.260 77.7

Sub Total $ 4,739,41* 4,739,414 12,654,324 7,914.910 625

Fuel$ 2.898.DDQ 4.631.136 -1.733.136 4.806.333 175.197 3.6

Total$ 2,898,000 9,370,550 •6,472,550 17,460,657 8,090,107 46.3

FLT HRS : 3,807 6,417 -2,610 •

Figure 11. Example of a Squadron Form

a. AIRPAC Summary Form

This window is accessed via the Forms menu bar option or the AIRPAC

button on the toolbar. All fields in the AIRPAC summary table are applicable and

represent AIRPAC subordinate commands total allocation and executed costs for all.

Improvements made to this window in the AFASTII application are:

• rearranging columns to better reflect total maintenance costs.

• more distinct date legend, enabling user to quickly determine period of report.

58

b. NAS Summary Form

This window is accessed via the Forms menu bar option or the NAS button

on the toolbar. When NAS is selected a dialog box is displayed in the center of the screen.

From the dialog box (discussed below) the user can select a particular NAS. All fields are

applicable with the exception of those in the Fuel $ row (only squadrons are allocated fuel

dollars). The data in this table represents the costs for total maintenance rendered by this

specific air station and the number of flight hours that have been flown at this NAS by

tenant or deployed squadrons. Improvements made to this window in the AFAST II

application are:

• dialog box allows specific NAS selection.

• rearranging columns to better reflect total maintenance costs.

• more distinct date legend, enabling user to quickly determine period of report.

c. CV Summary Form

This window is accessed via the Forms menu bar option or the CV button

on the toolbar. When CV is selected a dialog box is displayed in the center of the screen.

From the dialog box the user can select a particular CV. All fields are applicable with the

exception of those in the Fuel $ row (only squadrons are allocated fuel dollars). The data

in this table represents the total costs for maintenance rendered by this specific carrier and

the number of flight hours that have been flown at this CV by attached squadrons.

Improvements made to this window in the AFAST II application are:

• dialog box allows specific CV selection.

59

• rearranging columns to better reflect total maintenance costs.

• more distinct date legend, enabling user to quickly determine period of report.

d CVWSummary Form

The window is accessed via the Forms menu bar option or the CVW

button on the toolbar. When CVW is selected a dialog box is displayed in the center of the

screen. From the dialog box the user can select a particular CVW. All fields are applicable

with the exception of AVDLR $ and AFM $ Allocated (only NAS's and CV's are

allocated maintenance dollars). The data in this table represents the total flight hour and

fuel costs generated by all squadrons assigned to this carrier air wing. Improvements

made to this window in the AFASTII application are:

• dialog box allows specific CVW selection.

• rearranging columns to better reflect total maintenance costs.

• more distinct date legend, enabling user to quickly determine period of report.

e. Squadron Form

The window is accessed via the Forms menu bar option or the Squadron

button located on the toolbar. When Squadron is selected a dialog box is displayed in the

center of the screen. From the dialog box the user can select a particular Squadron via the

aircraft mission type. All fields are applicable with the exception of AVDLR $ and AFM $

Allocated (only NAS's and CV's are allocated maintenance dollars). The data in this table

represents the total flight hour and fuel costs generated by the squadron both home and

deployed. Improvements made to this window in the AFAST II application are:

60

• dialog box allows specific Squadron selection.

• rearranging columns to better reflect total maintenance costs.

• more distinct date legend, enabling user to quickly determine period of report.

• use of tabbed notebook to access detailed squadron information.

Each of the tabs of the notebook contains detailed information for each TMS the

particular squadron flies. When a particular TMS tab is selected (Figure 12) the

maintenance and fuel/flight hour data specific to that TMS is brought to the forefront of

the child window. This notebook concept allows the user to visually ascertain the

existence of all the TMS's that a squadron flies. The Squadron window will have at least

one TMS window, and may have many more. The number of notebook pages is

determined by the number of TMS's assigned to the squadron and resident in the database.

VFA-22
Fiscal Yeart 995
Begin Date 10/1/94

End Date:9/30/95

FA-18C

CNAP
Execution

OP-20
Should Cost

CNAP
Execution

OP-20
Should Cost

AVDLR
Pwr Plants

4.028.008
130.368

9.458.658 FUEL 4.631.136 4.806.333

Avionics
Air Frames

3.002.952
894.688

FLTHRS 6.417

Other 0
MiscTEC 0
Overhead 0

AFM
Pwr Plants

711.406
6.089

3.195.666 COST PER HOUR

Avionics 99.249 FUEL 722 749
Air Frames

Other
Misc TEC

130,269
475.799
0

AVDLR 628

AFM 111

• 1.474

498

Overhead 0

Figure 12. Example of a Detailed Squadron Form

61

The use of a tabbed notebook is yet another example of direct manipulation

principles integrated into the AFAST II design. Actions are rapid, incremental and

reversible, and can be performed with seemingly transparent physical actions instead of

complex queries. The results of the action (tab selection) are immediate and predictable.

/ TMSForm

This window is accessed via the Forms menu bar option or the TMS button

on the toolbar. When TMS is selected a dialog box is displayed in the center of the screen.

From the dialog box the user can select a particular TMS. The window design (Figure 13)

is similar to the basic format utilized for the preceding windows, however there exists two

notable differences. The first variance is all mission types, FRS, Support, TACAIR, Total,

(subsets of the TMS), are displayed on the first page of the notebook. This format is a

holdover from the original AFAST design and is intended to allow the user to view

summary data associated with the TMS and its major mission categories. The second

variance is that the table has been modified by deleting all data fields which are not

relevant, with the most significant benefit being an increase in available screen real estate

and the opportunity to create a much cleaner, uncluttered and user friendly table.

Consistency with AFAST is adhered to by using the identical row and column titles as well

as maintaining the same relative ordering of the remaining columns. A TMS has a tab for

each mission type (Figure 13) that it is assigned. When the tab is selected specific

maintenance and fuel/flight hour data is displayed for the TMS's mission type, as well as a

listing of squadrons which have been allocated funds to fly that mission with the specified

TMS.

62

Fiscal Yearrl 995 FA-18C
Begin Date:10/1/94

End Date: 9/30/95 CNAP OP-20 VARto
Execution Should Should Cost

AVDLRS W94',160 100
FRS AFM$ 2.124,200 100

FUEL$ 3.251.437 3,378,295 4
FLTHRS 4.085

AVDLR$ 0 0
AFM$ 0 0

SUPPORT FUELS

FLTHRS

0

0
0

AVDLR$ 7.451.160 51,648,960 85.6
TACAIR AFM$ 1.829.225 17,449,920 89.5

FUELS 26,153.868 26,244,960 0.3
FLTHRS 35.040

AVDLRS 7.451,160 56,943,120 B6.9 •

TOTAL AFM$ 1.829.225 19,574,120 90.7
FUELS 29,405.405 29,623,255 0.7

FLTHRS 39,125

Figure 13. Example of a TMS Form

4. Linear sequences and dialog boxes

A succession of interdependent dialog boxes is used to guide the user through a

series of choices to display the requested data. The dialog boxes are consistently designed

and act in a similar manner. Movement through menus and dialog boxes is a linear

sequence, a designed methodology used to guide the user through a decision making

process by presenting one decision at a time [Shneiderman93]. This is the philosophy

behind the design and implementation of the dialog boxes used in AFASTII to enable the

user to display data for specific NAS's, CV's, CVW's, Squadron's and TMS's.

Most of the major command category buttons on the toolbar are associated with a

dialog box. In Figure 14, the NAS dialog box is presented to the user who is now able to

immediately determine:

63

• The NAS's stored in the database.

Last selected NAS (highlighted by color bar and carrot).

Squadrons home-ported or deployed to the NAS.

Organizations which have spent maintenance funds allocated to the NAS.

NAS Selection

K<p«'!s>rvlww

Naval Air Stations: Squadrons:

11 NAS Alameda
NAS North Island
NAS Barbers Point
NAS Barking Sands
NAS Whidbey Island B
Tinker AFB
NAS El Centro
NAS Fallon
NAS Agana
NAS Atsugl
NAS Lemoore
NAS Mirlmar
NAWC China Lake

NAS North Island
VS-38
VS-29
VS-33
VS-41
VS-35
VRC-30
VQ-5

Figure 14. Example of a Dialog Box

-Organizations: ' i:;*• " %$

Ü COMHSLWINGPAC -
COMHSWWINGPAC J

sS§|
COMSEACONTROLWINS 1
HMM-163 jH'
NAMTRADETS NASNI fjl
NAS Barbers PT f5!"
NASNI TSC

J liLE mA
£?0K j fcJ&nMfiL „J? ilftlpj

The user then has the option to: select an NAS and display the NAS; select an

NAS, then a squadron, and display the squadron data; select an NAS, then an

organization, and display the organizational data. Should the user decide that he no

longer wishes to view NAS data he may close the dialog box using the Cancel button. If

the user is unfamiliar with the window methodology, as might be in the case of a naive

user, depressing the Help button will call the specific Help documents.

The dialog boxes are designed to rapidly move the user through the prefatory and

mundane selection process and place him/her at their intended location as quickly as

possible. Additionally, simplistic and logical error recovery techniques are integrated

64

into the methodology employing the What You See Is What You Get philosophy; if the

user is not satisfied with his selection choice he merely clicks on another selection or

exits from the dialog box. The dialog boxes offer a superior improvement over what is

presented to the user in the original AFAST interface, which are:

• One list box (e.g., NAS selection) per dialog box.

• Sub-menus where only one squadron or one organization could be viewed at
any one instance.

• No convenient error recovery.

• No indications provided to user as to his location in the menu hierarchy.

The use of dialog boxes to facilitate linear progression through the application

allows the user to focus more effectively on the task semantics, or the functional task,

being less concerned with system semantics. This is a much more natural, more efficient

and less error prone than the original AFAST method.

5. Prototype Performance

A consequential advantage of using Borland® Delphi™ tools for both the database

and application development was the ease with which both were coupled to create a

database prototype. The prototype was installed on an-IBM-compatible personal

computer, a pentium, 166Mhz with 32 Megabytes of memory. The purpose of the

prototype testing was qualitative in nature, designed to:

• Validate the database - i.e., the entities, attributes, relationships, triggers,
stored procedures.

• Validate query logic used in the user application.

65

• Confirm window features and functions performed as intended when provided
sample data from the database.

Quantitative analysis of the prototype was never intended as the differences in

performance between the prototype and ultimate hardware configuration are too

significant. However, important data was attained in the qualitative analysis of the

database and interface performance. This data is presented in Chapter V.

66

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

The objectives of this thesis were to:

• Develop an improved conceptual design of the AFAST database using the
enhanced entity-relationship model concepts and procedures.

• Specify the logical design of the improved database.

• Implement AFAST II, a prototype application of the redesigned database.

Enroute to meeting these objectives a thorough technical review of relational

database design methodology, human-computer interface design issues, and commercial

software database development tools was conducted. The information collected through

the course of this effort reinforced the underlying premise in the design of AFAST II, that

there is benefit to be gained by:

• Utilizing recognized design methodologies in the conceptual and logical model
development.

• Placing the design task and prototype development in the hands of schooled
and capable domain experts.

As work progressed it became apparent that the success of AFAST II would not

lie in providing optimal solutions or high performance algorithms, rather the application's

worth lies in its ability to provide the user with an explicit understanding of the AIRPAC

flight hour program. While much has been accomplished, the task is not yet complete.

This thesis provides the framework and cornerstone for ongoing work which will achieve

67

the goal of delivering a management information system to assist AIRPAC in its quest to

operate in a more business-like manner.

B. ADDITONAL RESEARCH AND DEVELOPMENT

Further work is necessary to meet the requirement to deliver an operational

database to CNAP no later than September 1997. Important and consequential milestones

which must be met are delineated below.

1. Development of the Expert User and Graphics interface

Two interfaces remain to be developed. These are:

• Expert User Interface. The database administrator application permitting the
user to execute queries which read and write to the database.

• The Graphics generation interface which transforms tabular data into chart and
graphics output.

The ease with which the normal user interface was developed and the robustness

which the system exhibited during qualitative evaluation compel us to recommend that the

Borland® Delphi™ tools continue to be utilized for application design, development and

implementation.

2. Definition of AFAST U hardware configuration

Currently all that has been specified for the targeted system is that the database

will reside on a Sun/Sparc server, and the clients will consist of an undetermined number

of IBM compatible personal computers. Efforts must be initiated to define hardware

68

specifics, number of clients and any hardware modifications which must be implemented to

the AIRPAC LAN to incorporate AFASTII.

3. Definition of AFAST n software configuration

The specifications for the software are more definitive than the hardware, yet more

work must be done to ensure that the software design is compatible with the hardware

configuration. Presently it is envisioned that all interface applications will be created using

Borland® Delphi™ tools and will reside on the client side. The database will be

developed using Oracle and will be resident on the server. Clients and Server will

communicate via the AIRPAC LAN, an Ethernet which uses Novell netware. As was the

case for the hardware configuration, the software specifics must be identified and

prototyped to ensure the desired configuration is a feasible configuration.

4. Modifications to reporting procedures

The ASKIT and NACA reports are data inputs which are extracted from other

programs and "shaped to fit" into AFAST II. NPS has frequently encouraged AIRPAC to

review the reporting procedures associated with these reports, and revise them to better

enable and expand the capabilities of AFAST II. It is agreed by all involved in the AFAST

process that these reports will eventually undergo modification. We recommend that

these changes be done early on in order to minimize the rewriting of stored procedures

and triggers.

69

5. Validation of the AFASTII database algorithms

Limited testing using a small database was conducted to verify that AFAST II

algorithms performed as designed. More thorough testing to include error checking and

exception handling must be conducted prior to system delivery. For testing purposes, the

database should be populated with current fiscal year data, with query results compared to

those results provided by the current AFAST system. Deviations between the two

systems should be accounted for (i.e., round-off error, updated algorithm used) and

documented.

6. Validation of AFAST II application interfaces

It is recommended that thorough test scenarios be generated to evaluate the

prototype performance. Test subjects, preferably naval aviators, can be drawn from the

NPS population and observed as they interface with the application. Critical to note will

be their actions, perceptions and approach to problem solving. A qualitative methodology

is recommended, as it can:

• Better help to identify areas where users are having problems.

• Provide information necessary to improve the design and development process.

7. Expansion of the Help function

At the present time the Help function, accessed via the main menu bar, is not

implemented. Though not required by AIRPAC we strongly recommend Help procedures

delineating how to accomplish specific queries (i.e., display Squadron data for a Squadron

assigned at a specific NAS) be implemented into the first deliverable application.

70

Additional Help features which should be incorporated into follow-on deliveries include

definitions of terms and explanations of algorithms used to perform database queries.

71

72

APPENDIX A. DATABASE SOUCE CODE

This appendix contains the source code for the definition of the AFASTII

database. Specifically, the Interbase scripts that were used to input the metadata are

presented.

A. DOMAIN DEFINITION

CONNECT "d:\thesis\database\afast_db"
USER"sqldba" PASSWORD "masterkey";

CREATE DOMAIN UIC AS CHAR(6)
NOT NULL
CHECK ((VALUE > '999999') AND /* first char a letter */
(VALUE STARTING WITH 'R') OR
(VALUE STARTING WITON'));

CREATE DOMAIN NAME AS VARCHAR(25)
DEFAULT 'NONE'
NOT NULL;

CREATE DOMAIN MILITARY_SERVICE AS VARCHAR(4)
DEFAULT 'USN'

NOT NULL
CHECK (VALUE IN ('USN','USMC'));

CREATE DOMAIN MISSIONJTYPE AS CHAR(1)
NOT NULL
CHECK (VALUE IN (T, 'S', 'R'));

CREATE DOMAIN TYPE_NAME AS VARCHAR(5)
NOT NULL
CHECK (VALUE IN (•VFA','VA','VF','VS','VAQ','VAW','VX',,VMFA','VRC','VQ','HS'

•HCVHMVHSLVVP'));

CREATE DOMAIN NAS_OR_CV AS CHAR(1)
DEFAULT T'
NOT NULL
CHECK (VALUE IN (T, 'F'));

CREATE DOMAIN TMS_NOMEN AS VARCHAR(7)
NOT NULL;

CREATE DOMAIN YEAR AS SMALLINT
DEFAULT '96'
NOT NULL

73

CHECK (VALUE >= 95);

CREATE DOMAIN TECTYPE AS CHAR(4)
NOT NULL
CHECK (VALUE STARTING WITH 'A');

CREATE DOMAIN TMS_OP20_COST AS SMALLINT
NOT NULL
CHECK (VALUE >= 0);

CREATE DOMAIN START_DATE AS DATE
NOT NULL
CHECK (VALUE > 9-30-94);

CREATE DOMAIN END_DATE AS DATE
NOT NULL;

CREATE DOMAIN FLT_HRS AS INTEGER
DEFAULT 0
NOT NULL
CHECK (VALUE < 9999);

CREATE DOMAIN EXEC_COSTS AS DECIMAL (10,2)
DEFAULT 0.00

NOT NULL;

CREATE DOMAIN MAINT_TYPE AS VARCHAR(5)
NOT NULL
CHECK (VALUE IN ('AVDLR', 'AFM'));

CREATE DOMAIN BRANCH_TYPE AS VARCHAR(IO)
NOT NULL
CHECK (VALUE IN ('PWR_PLANTS', 'AVIONICS', 'AIRFRAMES','OTHER', 'MISCTEC,

'OVERHEAD'));

CREATE DOMAIN MAINT_COST_TYPE AS CHAR(l)
NOT NULL
CHECK (VALUE IN ('D','0'));

CREATE DOMAIN OP20_FLT_HRS AS INTEGER
NOT NULL
CHECK (VALUE > 0 AND VALUE < 500000);

CREATE DOMAIN OP20_FUNDS AS DECIMAL(12,2)
NOT NULL
CHECK (VALUE > 0);

CREATE DOMAIN CVW_END_DATE AS DATE;

CREATE DOMAIN NACA_UIC AS CHAR(6)
CHECK (((VALUE > '999999') AND
((VALUE STARTING WITH 'R') OR
(VALUE STARTING WITH'N')) OR (VALUE IS NULL)));

74

B. TABLE DEFINITION

CONNECT "d:\thesis\database\afast_db"
USER"sqldba" PASSWORD "masterkey";

Create Table Squadron
(SquadronJJIC UIC,
Squadron_Name NAME,
Service MILITARY SERVICE,
Mission MISSIONJYPE,
Type TYPE_NAME,
Primary Key(Squadron UIC));

COMMIT;

Create Table NAS CV
(NAS CV UIC UIC,
NAS CV Name NAME,
CV NAS_OR_CV,
Primary Key (NAS CV UIC));

COMMIT;

Create Table Deployed
(SquadronJJIC UIC,
NAS_CV_UIC UIC,
Remarks VARCHAR(50),
Primary Key (SquadronJJIC, NAS _CVUIQ,
Foreign Key (SquadronJJIC)

REFERENCES Squadron (Squadron JJIC),
Foreign Key (NAS_CV JJIC)

REFERENCES NAS.CV (NAS_CWJJIC));
COMMIT;

Create Table Organization
(ORGJvTame
Remarks
Primary Key (ORGJvfame));

COMMIT;

NAME,
VARCHAR(50),

Create Table Related Jo
(OrgjNTame NAME,
NASj:vjnc Ute,
Primary Key (NAS JCVJJIC, ORG_Name),
Foreign Key (NAS_CV JJIC)

REFERENCES NAS_CV (NAS _CVJJIC),
Foreign Key (ORG JSTame)

REFERENCES Organization (ORG JJame));
COMMIT;

Create Table TMS
(ED JMS
TMS
Service
Mission

SMALLINT NOT NULL,
TMSJvTOMEN,
MILITARYJ^ERVICE,
MISSION TYPE,

75

FiscalYear
TEC
Fuel_Cost_Hour
AVDLR_Cost_Hour
AFM_Cost_Hour
Remarks
Primary Key (ID_TMS));

COMMIT;

YEAR,
TEC_TYPE,
TMS_OP20_COST,
TMS_OP20_COST,

TMS_OP20_COST,
VARCHAR(50),

Create Table ASKIT
(ID_ASKIT
Trans_Start_Date
Trans_End_Date
TEC
Flt_Hrs
Fuel$
SquadronUIC
NAS_CV_UIC

ID_TMS
Primary Key (K)_ASKIT),
Foreign Key (SquadronUIC)

REFERENCES Squadron (SquadronJJIC),
Foreign Key (NAS_CV_UIC)

REFERENCES NAS_CV (NAS_CVUIC),
Foreign Key (ID_TMS)

REFERENCES TMS (ID_TMS),
CHECK (Trans_End_Date > Trans_Start_Date));

COMMIT;

INTEGER NOT NULL,
START_DATE,
END_DATE,
TEC_TYPE,

FLT_HRS,
EXEC_COSTS,

UIC,
UIC,

SMALLINT NOT NULL,

Create Table NACA.
(ID_NACA
SquadronUIC
NAS_CV_UIC
ID_TMS
ORG_Name
MainType
Branch
Cost
Date_Of_Trans
Cost_Type
Primary Key (H)_NACA),
Foreign Key (SquadronUIC)

REFERENCES Squadron (SquadronJJIC),
Foreign Key (NAS_CV_UIC)

REFERENCES NAS_CV (NAS_CV_UIC),
Foreign Key (ED JIMS)

REFERENCES TMS (ID_TMS),
Foreign Key (ORG_Name)

REFERENCES Organization (ORG_Name))
COMMIT;

INTEGER NOT NULL,
NACA_UIC,
NACA_UIC,

SMALLINT NOT NULL,
NAME,
MAINTTYPE,
BRANCH_TYPE,
EXEC_COSTS,
START_DATE,
MAINT COST_TYPE,

76

Create Table FY_Budget
(FiscalYear
OP20_Budget_Flt_Hrs
OP20_Budget_AVDLR
OP20_Budget_AFM
OP20_Budget_FUEL
CNAP_Allocated_Flt_Hrs
CNAP_Allocated_AVDLR
CNAP_Allocated_AFM
CNAP_Allocated_Fuel
Primary key (Fiscal_Year));

COMMIT;

YEAR,
OP20_FLT_HRS,
OP20_FUNDS,
OP20_FUNDS,
OP20_FUNDS,

OP20_FLT_HRS,
OP20_FUNDS,

OP20_FUNDS,
OP20 FUNDS,

Create Table Sqd_Allocated
(Fiscal_Year
SquadronUIC
ID_TMS
Hours_Ql
Hours_Q2
Hours_Q3
Hours_Q4
Hours_Total

Hours_Q4),
Fuel_Ql
Fuel_Q2
Fuel_Q3
Fuel_Q4
Fuel_Total

Fuel_Q4),
Primary Key (Fiscal_Year, SquadronUIC, ID_TMS)
Foreign Key (Squadron_UIC)

REFERENCES Squadron (Squadron_UIC),
Foreign Key (ID_TMS)

REFERENCES TMS (ID_TMS),
Foreign Key (FiscalYear)

REFERENCES FY_Budget (Fiscal_Year));
COMMIT;

YEAR,
UIC,

SMALLINT NOT NULL,
FLT_HRS,
FLT_HRS,
FLT_HRS,
FLT_HRS,
COMPUTED BY (Hours_Ql + Hours_Q2 + Hours_Q3 +

EXECCOSTS,
EXEC_COSTS,
EXEC_COSTS,
EXEC_COSTS,
COMPUTED BY (Fuel_Ql + Fuel_Q2 + Fuel_Q3 +

Create Table NAS_CV_Allocated
(FiscalYear
NAS_CV_UIC
AVDLR_Q1
AVDLR_Q2
AVDLR_Q3
AVDLR_Q4
AVDLR_Total

AVDLR_Q3 + AVDLR_Q4),
AFM_Q1
AFM_Q2
AFM_Q3
AFM_Q4
AFM_Total

AFM_Q4),

YEAR,
UIC,
EXEC_COSTS,
EXEC_COSTS,
EXEC_COSTS,
EXEC_COSTS,
COMPUTED BY (AVDLR_Q1 + AVDLR_Q2 +

EXEC_COSTS,
EXEC_COSTS,
EXEC.COSTS,
EXEC_COSTS,

COMPUTED BY (AFM_Q1 + AFM_Q2 + AFM_Q3 +

77

Primaiy Key (Fiscal_Year, NAS_CV_UIC),
Foreign Key (NAS_CVUIC)

REFERENCES NAS^CV (NAS_CV_UIC),
Foreign Key (Fiscal_Year)

REFERENCES FY_Budget (Fiscal_Year));
COMMIT;

Create Table CVW
(CVW UIC UIC,
CVW Name NAME,
Primary Key (CVW UIC));

COMMIT;

Create Table SQD CVW
(SQUADRON UIC UIC,
CVWJJIC UIC,
CVW Start Date START DATE
CVW_End_Date CVW_END_DATE,
Remarks varchar(50),
Primary Key (SquadronJJIC, CVWJJIC),
Foreign Key (SquadronJJIC)

REFERENCES Squadron (SquadronUIC),
Foreign Key (CVWJJIC)

REFERENCES CVW (CVW_UIC),
CHECK (CVW_End_Date > CVW_START_DATE));

COMMIT;

78

C. TRIGGER DEFINITION

CONNECT "d:\thesis\database\afast_db"
USER"sqldba" PASSWORD "masterkey";

CREATE GENERATOR TMS_no_gen;
SET GENERATOR TMS_no_gen to 0;
SET TERM!!;
CREATE TRIGGER set_TMS_no FOR TMS
BEFORE INSERT AS
BEGIN

new.IDTMS = gen_id(TMS_no_gen, 1);
END!!
SET TERM;!!
COMMIT;

CREATE GENERATOR NACA_no_gen;
SET GENERATOR NACA_no_gen to 0;
SET TERM!!;
CREATE TRIGGER set_NACA_no FOR NACA
BEFORE INSERT AS
BEGIN

new.IDNACA = gen_id(NACA_no_gen, 1);
END!!
SET TERM;!!
COMMIT;

CREATE GENERATOR ASKIT_no_gen;
SET GENERATOR ASKIT_no_gen to 0;
SET TERM!!;
CREATE TRIGGER set_ASKIT_no FOR ASKIT
BEFORE INSERT AS
BEGIN

new.ID_ASKIT = gen_id(ASKIT_no_gen, 1);
END!!
SET TERM;!!
COMMIT;

79

D. STORED PROCEDURE - AIRPAC

CONNECT "d:\thesis\database\afast_db"
USER"sqldba" PASSWORD "masterkey";
SET TERM A;

CREATE PROCEDURE AIRPAC_Summary(FY Integer, BeginDate Date, EndDate Date) RETURNS
(BudgetAVDLR Float, BudgetAFM Float, BudgetFuel Float, BudgetFltHrs Integer,
AllocatedAVDLR Float, AllocatedAFM Float, AllocatedFuel Float, AllocatedFltHrs Integer,
ExecutedAVDLR Float, ExecutedAFM Float, ExecutedFuel Float, ExecutedFltHrs Integer,
ShouldAVDLR Float, ShouldAFM Float, ShouldFuel Float) AS

DECLARE VARIABLE SQD CHAR(6);
DECLARE VARIABLE X Float;
DECLARE VARIABLE Y Float;
DECLARE VARIABLE Z Float;

BEGIN

SELECT OP20_Budget_AVDLR,OP20_Budget_AFM,OP20_Budget_Fuel,OP20_Budget_Flt_Hrs,
CNAP_Allocated_AVDLR, CNAP_Allocated_AFM, CNAP_Allocated_Fuel, CNAP_Allocated_Flt_Hrs
FROM FY_Budget
WHERE Fiscal_Year = :FY
INTO :BudgetAVDLR:BudgetAFM, :BudgetFuel, :BudgetFltHrs, :AllocatedAVDLR :AllocatedAFM,
:AllocatedFuel, :AllocatedFltHrs;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.MainType = "AVDLR" and NA.Date_Of_Trans >= :BeginDate and
NADate_Of_Trans <= :EndDate

INTO :ExecutedAVDLR;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.Main_Type = "AFM" and NA.Date_Of_Trans >= :BeginDate and
NA.Date_Of_Trans <= :EndDate

INTO :ExecutedAFM;

SELECT Sum(Fuel$), Sum(Flt_Hrs)
FROM ASKIT A
WHERE A.Trans_Start_Date >= :BeginDate and ATrans_End_Date <= :EndDate
INTO :ExecutedFuel, :ExecutedFltHrs;

ShouldAVDLR = 0.0;
ShouldAFM =0.0;
ShouldFuel =0.0;

FOR
SELECT SquadronJJIC
FROM Squadron
INTO :SQD

DO
BEGIN

80

SELECT Should_AVDLR Should_AFM, Should_Fuel
FROM SHOULD_COST(:SQD, :FY, :BeginDate, :EndDate)
INTO :X, :Y, :Z;

ShouldAVDLR = X + ShouldAVDLR;
ShouldAFM = Y + ShouldAFM;
ShouldFuel = Z + ShouldFuel;

END
SUSPEND;

ENDA

SET TERM;A

E. STORED PROCEDURE - CVW

CONNECT "d:\thesis\database\afast_db"
USER"sqldba" PASSWORD "masterkey";
SET TERM A;

CREATE PROCEDURE CVW_Summary(CVWName Char(25),FY Integer, BeginDate Date, EndDate
Date, Quarter Integer) RETURNS

(AllocatedFuel Float, AllocatedFltHrs IntegerJExecutedAVDLR Float, ExecutedAFM Float,
ExecutedFuel Float, ExecutedFltHrs Integer, ShouldAVDLR Float, ShouldAFM Float,
ShouldFuel Float) AS

DECLARE VARIABLE SQD CHAR(6);
DECLARE VARIABLE X Float;
DECLARE VARIABLE Y Float;
DECLARE VARIABLE Z Float;

BEGIN
If(:Quarter = 0)then
BEGIN

SELECT Sum(Fuel_Total), Sum(Hours_Total)
FROM CVW C, SQD_CVW SC, SQD_Allocated SA, Squadron S
WHERE C.CVW_Name = :CVWName and C.CVW_UIC = SC.CVW_UIC and SCSquadronJJIC =

S.SquadronUIC
and S.Squadron_UIC = SA.Squadron_UIC and SA.Fiscal_Year = :FY

INTO :AllocatedFuel, :AllocatedFltHrs;
END

If(:Quarter= l)then
BEGIN

SELECT Sum(Fuel_Ql), Sum(Hours_Ql)
FROM CVW C, SQD_CVW SC, SQD_Allocated SA, Squadron S
WHERE C.CVW_Name = :CVWName and C.CVWJJIC = SC.CVW_UIC and SCSquadronJJIC =

S.SquadronUIC
and S.SquadronUIC = SA.Squadron_UIC and SA.Fiscal_Year = :FY

INTO :AllocatedFuel,:AllocatedFltHrs;
END

81

If(:Quarter = 2)then
BEGIN

SELECT Sum(Fuel_Q2), Sum(Hours_Q2)
FROM CVW C, SQD_CVW SC, SQD_Allocated SA, Squadron S
WHERE C.CVW_Name = :CVWName and C.CVW_UIC = SC.CVWJJIC and SC.Squadron_UIC =

S.SquadronJJIC
and S.Squadron_UTC = SA.Squadron_UIC and SA.Fiscal_Year = :FY

INTO :AllocatedFuel, :AllocatedFltHrs;
END

If(:Quarter = 3)then
BEGIN

SELECT Sum(Fuel_Q3), Sum(Hours_Q3)
FROM CVW C, SQD_CVW SC, SQD_Allocated SA, Squadron S
WHERE C.CVW_Name = :CVWName and C.CVW_UIC = SC.CVW_UIC and SC.SquadronJJIC =

S.Squadron_UIC
and S.SquadronJJIC = SA.Squadron_UIC and SA.Fiscal_Year = :FY

INTO :AllocatedFuel, :AllocatedFltHrs;
END

If(:Quarter = 4)then
BEGIN

SELECT Sum(Fuel_Q4), Sum(Hours_Q4)
FROM CVW C, SQD_CVW SC, SQD_Allocated SA, Squadron S
WHERE C.CVW_Name = :CVWName and C.CVWJJIC = SC.CVW_UIC and SC.Squadron_UIC =

S.Squadron_UIC
and S.Squadron_UIC = SA.Squadron_UIC and SA.Fiscal_Year = :FY

INTO :AllocatedFuel, :AllocatedFltHrs;
END

SELECT Sum(Cost)
FROM CVW C, SQD_CVW SC, Squadron S, NACA N
WHERE C.CVW_Name = :CVWName and C.CVWJJIC = SC.CVWJJIC and SC.Squadron_UIC =

S.Squadron_UIC and
S.Squadron_UIC = N.SquadronJJIC and N.Main_Type = "AVDLR" and N.Date_Of_Trans >=

:BeginDate
and N.Date_Of_Trans <= :EndDate

INTO :ExecutedAVDLR;

SELECT Sum(Cost)
FROM CVW C, SQD_CVW SC, Squadron S, NACA N
WHERE C.CVW_Name = :CVWName and C.CVWJJIC = SC.CVW_UIC and SC.SquadronJJIC =

S.SquadronJJIC and
S.SquadronJJIC = N.SquadronJJIC and N.MainType = "AFM" and N.DateJ)f_Trans >= :BeginDate

and N.DateJ)f_Trans <= :EndDate
INTO :ExecutedAFM;

SELECT Sum(A.Fuel$), Sum(A.Flt_Hrs)
FROM CVW C, SQDJ3VW SC, Squadron S, ASKIT A
WHERE C.CVW_Name = :CVWName and C.CVWJJIC = SC.CVWJJIC and SC.SquadronJJIC =

S.SquadronJJIC and
S.SquadronJJIC = A. SquadronJJIC and A.TransJStartTJate >= :BeginDate and A.TransJlndJtete

<= :EndDate
INTO :ExecutedFuel, :ExecutedFltHrs;

82

ShouldAVDLR = 0.0;
ShouldAFM =0.0;
ShouldFuel =0.0;

FOR
SELECT S.SquadronJJIC
FROM CVW C, SQD_CVW SC, Squadron S
WHERE C.CVW_Name = :CVWName and C.CVWUIC = SC.CVW_TJIC and SC.Squadron_UIC =

S.SquadronJJIC
INTO :SQD

DO
BEGIN

SELECT Should_AVDLR Should_AFM, Should_Fuel
FROM SHOULD_COST(:SQD, :FY, :BeginDate, :EndDate)
INTO :X, :Y, :Z;

ShouldAVDLR = X + ShouldAVDLR;
ShouldAFM = Y+ShouldAFM;
ShouldFuel = Z + ShouldFuel;

END
SUSPEND;
ENDA

SET TERM; A

F. STORED PROCEDURES - NAS_LATE_REPORT, SQD_LATE_REPORT

CONNECT "d:\thesis\database\afast_db"
USER'sqldba" PASSWORD "masterkey";
SET TERM A;
CREATE PROCEDURE NASLateReport(LateDate Date) RETURNS (NASNames Char(25)) AS
BEGIN

SELECT Distinct NAS_CV_Name
FROM NAS_CV
WHERE not exists (SELECT NAS_CV_UIC

From NACA
WHERE Report_Date >= :LateDate)

INTO :NASNames;
SUSPEND;
ENDA

CREATE PROCEDURE SQDLateReport(LateDate Date) RETURNS (SQDNames Char(25)) AS
BEGIN

SELECT Distinct SquadronName
FROM Squadron
WHERE NOT EXISTS (SELECT SquadronJJIC

FROM ASKIT
WHERE Trans_End_Date >= :LateDate)

INTO :SQDNames;
SUSPEND;
ENDA

SET TERM ;A

83

G. STORED PROCEDURE - NAS_CV SUMMARY
CONNECT "d:\thesis\database\afast_db"
USER"sqldba" PASSWORD "masterkey";
SET TERM A ;

CREATE PROCEDURE NAS_CV_Summaiy(NASName Char(25), FY Integer, BeginDate Date,
EndDate Date, Quarter Integer)
RETURNS (AllocatedAVDLR Float, AllocatedAFM Float, AllocatedFuel Float, AllocatedFltHrs Integer,

ExecutedAVDLR Float, ExecutedAFM Float, ExecutedFuel Float, ExecutedFltHrs Integer,
ShouldAVDLR Float, ShouldAFM Float, ShouldFuel Float) AS

DECLARE VARIABLE SQD CHAR(6);
DECLARE VARIABLE X Float;
DECLARE VARIABLE Y Float;
DECLARE VARIABLE Z Float;

BEGIN
if (:Quarter = 0) then
BEGIN

SELECT AVDLRJTotal, AFMTotal
FROM NAS_CV_Allocated NA, NAS_CV N
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = NA.NAS_CV_UIC and

NA.Fiscal_Year = :FY
INTO lAllocatedAVDLR, :AllocatedAFM;

SELECT Sum(Fuel_Total), Sum(Hours_Total)
FROM NAS_CV N, Deployed D, SQD_Allocated SA, Squadron S
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = D.NAS_CV_UIC and

D.Squadron_UIC = S.SquadronUIC
and S.Squadron_UIC = SA.Squadron_UIC and SA.Fiscal_Year = :FY

INTO :AllocatedFuel,:AllocatedFltHrs;
END

if (:Quarter= l)then
BEGIN

SELECT AVDLR_Q1, AFM_Q1
FROM NAS_CV_Allocated NA, NAS_CV N
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = NA.NAS_CV_UIC and

NA.Fiscal_Year = :FY
INTO :AllocatedAVDLR, :AllocatedAFM;

SELECT Sum(Fuel_Ql),Sum(Hours_Ql)
FROM NAS_CV N, Deployed D, SQD_Allocated SA, Squadron S
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = D.NAS_CV_UIC and

D.Squadron_UIC = S.SquadronJJIC
and S.Squadron_UIC = SA.Squadron_UIC and SA.Fiscal_Year = :FY

INTO :AllocatedFuel,:AllocatedFltHrs;
END

if(:Quarter = 2)then
BEGIN

SELECT AVDLR_Q2, AFM_Q2
FROM NAS_CV_Allocated NA, NAS_CV N

84

WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = NA.NAS_CV_UIC and
NA.Fiscal_Year = :FY

INTO :AllocatedAVDLR, :AllocatedAFM;

SELECT Sum(Fuel_Q2), Sum(Hours_Q2)
FROM NAS_CV N, Deployed D, SQD_Allocated SA, Squadron S
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = D.NAS_CV_UIC and

D.SquadronJJIC = S.Squadron_UIC
and S.SquadronJJIC = SA.Squadron_UIC and SA.Fiscal_Year = :FY

INTO :AllocatedFuel, :AllocatedFltHrs;
END

if(:Quarter = 3)then
BEGIN

SELECT AVDLR_Q3, AFM_Q3
FROM NAS_CV_Allocated NA, NAS_CV N
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = NA.NAS_CV_UIC and

NA.Fiscal_Year = :FY
INTO :AllocatedAVDLR, :AllocatedAFM;

SELECT Sum(Fuel_Q3), Sum(Hours_Q3)
FROM NAS_CV N, Deployed D, SQD_Allocated SA, Squadron S
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = D.NAS_CV_UIC and

D.Squadron_UIC = S.Squadron_UIC
and S.SquadronJJIC = SA.Squadron_UIC and SAFiscal_Year = :FY

INTO :AllocatedFuel, :AllocatedFltHrs;
END

if (:Quarter = 4) then
BEGIN

SELECT AVDLR_Q4, AFM_Q4
FROM NAS_CV_Allocated NA, NAS_CV N
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = NA.NAS_CV_UIC and

NA.Fiscal_Year = :FY
INTO :AllocatedAVDLR, :AllocatedAFM;

SELECT Sum(Fuel_Q4), Sum(Hours_Q4)
FROM NAS_CV N, Deployed D, SQD_Allocated SA, Squadron S
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = D.NAS_CV_UIC and

D.SquadronUIC = S.SquadronJJIC
and S.Squadron_UIC = SA.Squadron_UIC and SA.Fiscal_Year = :FY

INTO :AllocatedFuel, :AllocatedFltHrs;
END

SELECT Sum(Cost)
FROM NAS_CV N, NACA NA
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = NA.NAS_CV_UIC and

NA.Main_Type = "AVDLR" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :ExecutedAVDLR;

SELECT Sum(Cost)
FROM NAS_CV N, NACA NA

85

WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = NA.NAS_CV_UIC and
NA.Main_Type = "AFM" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :ExecutedAFM;

SELECT Sum(A.Fuel$), Sum(A.Flt_Hrs)
FROM NAS_CV N, Deployed D, Squadron S, ASKIT A
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = D.NAS_CV_UIC and

D.Squadron_UIC = S.SquadronJJIC and
S.SquadronJJIC = ASquadronUIC and ATrans_Start_Date >= :BeginDate and A.Trans_End_Date

<= :EndDate
INTO :ExecutedFuel, :ExecutedFltHrs;

ShouldAVDLR = 0.0;
ShouldAFM =0.0;
ShouldFuel =0.0;

FOR
SELECT S.SquadronJJIC
FROM NAS_CV N, Deployed D, Squadron S
WHERE N.NAS_CV_Name = :NASName and N.NAS_CV_UIC = D.NAS_CV_UIC and

D.Squadron_UIC = S.Squadron_UIC
INTO :SQD

DO
BEGIN

SELECT Should_AVDLR, Should_AFM, Should_Fuel
FROM SHOULD_COST(:SQD, :FY, :BeginDate, :EndDate)
INTO :X, :Y, :Z;

ShouldAVDLR = X + ShouldAVDLR;
ShouldAFM = Y + ShouldAFM;
ShouldFuel = Z + ShouldFuel;

END
SUSPEND;

ENDA

SET TERM;A

H. STORED PROCEDURE - NAS_SQUADRON SUMMARY

CONNECT "d:\thesis\database\afast_db"
USER"sqldba" PASSWORD "masterkey";
SET TERM A;

CREATE PROCEDURE NAS_Sqd_Summary(SquadronName Char(25), NASName Char(25),FY
Integer, BeginDate Date, EndDate Date, Quarter Integer) RETURNS (AllocatedFuel Float,
AllocatedFltHrs Integer, ExecutedAVDLR Float, ExecutedAFM Float, ExecutedFuel Float,
ExecutedFltHrs Integer, ShouldAVDLR Float, ShouldAFM Float, ShouldFuel Float) AS

DECLARE VARIABLE SQDJJIC CHAR(6);
DECLARE VARIABLE NASJJIC CHAR(6);

86

BEGIN

SELECT NAS_CV_UIC
FROM NAS_CV
WHERE NAS_CV_NAME = :NASName
INTO :NAS_UIC;

SELECT Squadron_UIC
FROM Squadron
WHERE Squadron_Name = :SquadronName
INTO :SQD_UIC;

IF (:Quarter = 0) then
BEGIN

SELECT Sum(Fuel_Total), Sum(Hours_Total)
FROM SQD_Allocated SA, Squadron S
WHERE S.Squadron_Name = :SquadronName and S.SquadronUIC = SA.Squadron UIC and

SA.Fiscal_Year=:FY
INTO :AlIocatedFuel, :AllocatedFltHrs;

END

IF CQuarter = 1) then
BEGIN

SELECT Sum(Fuel_Ql), Sum(Hours_Ql)
FROM SQD_Allocated SA, Squadron S
WHERE S.Squadron_Name = :SquadronName and S.Squadron_UIC = SA.SquadronUIC and

SA.Fiscal_Year = :FY
INTO :AllocatedFuel, :AllocatedFltHrs;

END

IF CQuarter = 2) then
BEGIN

SELECT Sum(Fuel_Q2), Sum(Hours_Q2)
FROM SQD_Allocated SA, Squadron S
WHERE S.Squadron_Name = :SquadronName and S.SquadronUIC = SA.SquadronUIC and

SA.Fiscal_Year=:FY
INTO :AllocatedFuel, :AllocatedFltHrs;

END

IF (:Quarter = 3) then
BEGIN

SELECT Sum(Fuel_Q3), Sum(Hours_Q3)
FROM SQD_Allocated SA, Squadron S
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = SASquadronUIC and

SA.Fiscal_Year=:FY
INTO :AllocatedFuel, :AllocatedFltHrs;

END

IF (:Quarter = 4) then
BEGIN

SELECT Sum(Fuel_Q4), Sum(Hours_Q4)
FROM SQD_Allocated SA Squadron S
WHERE S.Squadron_Name = :SquadronName and S.SquadronUIC = SASquadronUIC and

SA.Fiscal Year = :FY

87

INTO :AllocatedFuel, :AllocatedFltHrs;
END

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronUIC and

NA.NAS_CV_UIC = :NAS_UIC and NA.Main_Type = "AVDLR" and NA.Date_Of_Trans >=
:BeginDate

and Date_Of_Trans <= :EndDate
INTO :ExecutedAVDLR;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronUIC and

NA.NAS_CV_UIC = :NAS_UIC and NA.Main_Type = "AFM" and NA.Date_Of_Trans >= :BeginDate
and Date_Of_Trans <= :EndDate

INTO :ExecutedAFM;

SELECT Sum(Fuel$)
FROM Squadron S, ASKIT A
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = A.Squadron_UIC and

A.NAS_CV_UIC = :NAS_UIC and A.Trans_Start_Date >= :BeginDate and ATrans_End_Date <=
:EndDate

INTO :ExecutedFuel;

SELECT Sum(Flt_Hrs)
FROM Squadron S, ASKIT A
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = A.SquadronUIC and

A.NAS_CV_UIC = :NAS_UIC and A.Trans_Start_Date >= :BeginDate and A.Trans_End_Date <=
:EndDate

INTO :ExecutedFltHrs;

SELECT ShouldJWDLR, Should_AFM, Should_Fuel
FROM SHOULD_COST(:SQD_UIC, :FY, :BeginDate, :EndDate)
INTO :ShouldAVDLR, :ShouldAFM, :ShouldFuel;

SUSPEND;
ENDA

SET TERM;A

I. STORED PROCEDURE - NAS_SQUADRON DETAIL

CONNECT "d:\thesis\database\afast_db"
USER'sqldba" PASSWORD "masterkey";
SETTERMA;

CREATE PROCEDURE NAS_DETAIL(SquadronName Char(25), NASCVName Char(25),TMS_NO
Integer,FY Integer, BeginDate Date, EndDate Date) RETURNS
(ExecutedAVDLR Float, AVDLRPwrPlants Float, AVDLRAvionics Float, AVDLRAirFrames Float,
AVDLROther Float, AYDLRMiscTEC Float, AVDLROverhead Float,ExecutedAFM Float,
AFMPwrPlants Float, AFMAvionics Float, AFMAirFrames Float, AFMOther Float, AFMMiscTEC Float,

88

AFMOverhead Float, ExecutedFuel Float, ExecutedFltHrs Integer, ShouldAVDLR Float, ShouldAFM
Float, ShouldFuel Float, CostHrAVDLR Integer, CostHrAFM Integer, CostHrFuel Integer,
ActualCostHrAVDLR Float, ActualCostHrAFM Float,ActualCostHrFuel Float) AS

DECLARE VARIABLE NASCVUIC Char(6);
BEGIN

SELECT NAS_CV_UIC
FROMNAS_CV
WHERE NAS_CV_NAME = :NASCVName
INTO :NASCVUIC;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.Squadron_Name = :SquadronName and S.SquadronUIC = NA.SquadronUIC and

NA.ID_TMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.Main_Type = "AVDLR" and
NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :ExecutedAVDLR;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.Squadron_UIC and

NA.ID_TMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.Main_Type = "AVDLR" and
NA.BRANCH = "PWR_PLANTS" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AVDLRPwrPlants;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NASquadronUIC and

NA.ID_TMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.Main_Type = "AVDLR" and
NA.BRANCH = "AVIONICS" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AVDLRAvionics;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.Squadron_Name = :SquadronName and S.SquadronUIC = NA.Squadron_UIC and

NA.ID_TMS = :TMS_NOandNA.NAS_CV_UIC-NASCVUICandNA.Main_Type = "AVDLR" and
NA.BRANCH = "AIRFRAMES" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AVDLRAirFrames;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.Squadron_Name = :SquadronName and S.SquadronUIC = NA.Squadron_UIC and

NA.ID_TMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.Main_Type = "AVDLR" and
NA.BRANCH = "OTHER" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AVDLROther;

SELECT Sum(Cost)
FROM Squadron S, NACA NA

89

WHERE S.Squadron_Name;= :SquadronName and S.SquadronUIC = NA.SquadronUIC and
NA.E)_TMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.Main_Type = "AVDLR" and
NA.BRANCH = "MISCTEC" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AVDLRMiscTEC;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronUIC and

NA.ID_TMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.MainJType = "AVDLR" and
NA.BRANCH = "OVERHEAD" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AVDLROverhead;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronUIC and

NA.ID_TMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.MainJType = "AFM" and
NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :ExecutedAFM;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronJUIC and

NA.ID_TMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.MainJType = "AFM" and
NA.BRANCH = "PWR_PLANTS" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AFMPwrPlants;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronUIC and

NA.ID_TMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.MainJType = "AFM" and
NA.BRANCH = "AVIONICS" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AFMAvionics;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA. Squadron UIC and

NA.IDjrMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.Main_Type = "AFM" and
NA.BRANCH = "AIRFRAMES" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AFMAirFrames;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronUIC and

NA.IDJTMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.MainJType = "AFM" and
NA.BRANCH = "OTHER" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AFMOther;

90

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.Squadron_Name = :SquadronName and S.SquadronJJIC = NA.SquadronJJIC and

NA.IDTMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.Main_Type = "AFM" and
NA.BRANCH = "MISC_TEC" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate ~
INTO :AFMMiscTEC;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronJJIC and

NA.ID_TMS = :TMS_NO and NA.NAS_CV_UIC =:NASCVUIC and NA.Main_Type = "AFM" and
NA.BRANCH = "OVERHEAD" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AFMOverhead;

SELECT Sum(Fuel$), Sum(A.Flt_Hrs)
FROM Squadron S, ASKIT A
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = A.SquadronUIC and

A.ID_TMS = :TMS_NO and A.NAS_CV_UIC =:NASCVUIC and A.Trans_Start_Date >= :BeginDate
and A.Trans_End_Date <= :EndDate

INTO :ExecutedFuel, :ExecutedFltHrs;

SELECT T.AVDLR_Cost_Hour, T.AFM_Cost_Hour, T.Fuel_Cost_Hour
FROMTMST
WHERE T.ID_TMS = :TMS_NO
INTO :CostHrAVDLR :CostHrAFM, :CosiHrFuel;

if (ExecutedFltHrs is NULL) then
ExecutedFltHrs = 0;

ShouldAVDLR = ExecutedFltHrs * CostHrAVDLR;
ShouldAFM = ExecutedFltHrs * CostHrAFM;
ShouldFuel = ExecutedFltHrs * CostHrFuel;

ActualCostHrAVDLR = ExecutedAVDLR / ExecutedFltHrs;
ActualCostHrAFM = ExecutedAFM / ExecutedFltHrs;
ActualCostHrFuel = ExecutedFuel / ExecutedFltHrs;

SUSPEND;
ENDA

SET TERM;A

J. STORED PROCEDURE - ORGANIZATION SUMMARY

CONNECT "d:\thesis\database\afast_db"
USER"sqldba" PASSWORD "masterkey";
SET TERM A;

CREATE PROCEDURE ORG_Summary(ORGName Char(25), NASName Char(25), FY Integer,
BeginDate Date, EndDate Date) RETURNS (AVDLRPwrPlants Float, AVDLRAvionics Float,
AVDLRAirFrames Float, AVDLROther Float,AVDLRMiscTEC Float, AVDLROverhead Float,

91

AFMPwrPlants Float, AFMAvionics Float, AFMAirFrames Float, AFMOther Float, AFMMiscTEC Float,
AFMOverhead Float) AS

DECLARE VARIABLE NASUIC Char(6);
BEGIN

SELECT NAS_CV_UIC
FROMNAS_CV
WHERE NAS_CV_NAME = :NASName
INTO :NASUIC;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type =

"AVDLR" and NA.BRANCH = "PWRJPLANTS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :AVDLRPwrPlants;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type =

"AVDLR" and NA.BRANCH = "AVIONICS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :AVDLRAvionics;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type =

"AVDLR" and NA.BRANCH = "AIRFRAMES" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO -.AVDLRAirFrames;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type =

"AVDLR" and NA.BRANCH = "OTHER" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :AVDLROther;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type =

"AVDLR" and NA.BRANCH = "MISC_TEC" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :AVDLRMiscTEC;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_.Type =

"AVDLR" and NA.BRANCH = "OVERHEAD" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :AVDLROverhead;

SELECT Sum(Cost)

92

FROMNACANA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type

"AFM" and NA.BRANCH = "PWR_PLANTS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :AFMPwrPlants;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type ■

"AFM" and NA.BRANCH = "AVIONICS" and NA.Date_Of_Trans >= :BeginDate
and NA.DateOfTrans <= :EndDate

INTO :AFMAvionics;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type =

"AFM" and NA.BRANCH = "AIRFRAMES" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :AFMAirFrames;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type =

"AFM" and NA.BRANCH = "OTHER" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :AFMOther;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type =

"AFM" and NABRANCH = "MISC_TEC" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :AFMMiscTEC;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.NAS_CV_UIC = :NASUIC and NA.ORG_Name = :ORGName and NA.Main_Type

"AFM" and NA.BRANCH = "OVERHEAD" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :AFMOverhead;

SUSPEND;
ENDA

SET TERM:A

K. STORED PROCEDURE - SHOULD COST

/* This procedure calculates the should-cost of a squadron that is past in as a parameter */

CONNECT "d:\thesis\database\afast_db"
USER'sqldba" PASSWORD "masterkey";
SET TERM A;

93

CREATE PROCEDURE SHOULD_COST(SQD CHAR(6), FY Integer, BeginDate Date, EndDate Date)
RETURNS (Should_AVDLR Float, Should_AFM Float, Should_Fuel Float) AS

DECLARE VARIABLE TMS_NO Integer;
DECLARE VARIABLE CostHrAVDLR Integer;
DECLARE VARIABLE CostHrAFM Integer;
DECLARE VARIABLE CostHrFuel Integer;
DECLARE VARIABLE SumFltHrs Integer;
BEGIN

Should_AVDLR = 0.0;
Should_AFM =0.0;
Should_Fuel =0.0;

/* For each squadron TMS obtain the cost per flight hour and calculate the should cost */
FOR

SELECT T.IDJTMS, T.AVDLR_Cost_Hour, T.AFM_Cost_Hour, T.Fuel_Cost_Hour
FROM Squadron S, SQD_Allocated SA, TMS T
WHERE S.Squadron_UIC = :SQD and S.Squadron_UIC = SA.Squadron_UIC and SA.ID_TMS =

T.IDJTMS and T.Fiscal_Year = :FY
INTO :TMS_NO, :CostHrAVDLR, :CostHrAFM, :CostHrFuel

DO
BEGIN
if (:TMS_NO is NULL) then

BEGIN
CostHrAVDLR = 0;
CostHrAFM = 0;
CostHrFuel = 0;

END

SELECT Sum(A.Flt_Hrs)
FROM Squadron S, ASKIT A
WHERE S.SquadronJJIC = :SQD and S.SquadronJJIC = A.SquadronJJIC and A.ID_TMS =

:TMS_NO and Trans_Start_Date >= :BeginDate and Trans_End_Date <= :EndDate
INTO :SumFltHrs;

if (: SumFltHrs is NULL) then
SumFltHrs = 0;

Should_AVDLR = CostHrAVDLR * SumFltHrs + Should_AVDLR;
Should_AFM = CostHrAFM * SumFltHrs + Should_AFM;
Should_Fuel = CostHrFuel * SumFltHrs + Should_Fuel;

END
SUSPEND;
ENDA

set term:A

L. STORED PROCEDURE - SQUADRON SUMMARY

CONNECT "d:\thesis\database\afast_db"
USER"sqldba" PASSWORD "masterkey";
SET TERM A;

94

CREATE PROCEDURE Squadron_Summary(SquadronName Char(25), FY Integer, BeginDate Date,
EndDate Date, Quarter Integer) RETURNS

(AllocatedFuel Float, AllocatedFltHrs Integer,
ExecutedAVDLR Float, ExecutedAFM Float, ExecutedFuel Float, ExecutedFltHrs Integer,
ShouldAVDLR Float, ShouldAFM Float, ShouldFuel Float) AS

DECLARE VARIABLE SQDJJIC CHAR(6);

BEGIN
if(:Quarter = 0)then
BEGIN

SELECT Sum(Fuel_Total), Sum(Hours_Total)
FROM SQD_Allocated SA, Squadron S
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = SA.SquadronUIC and

SA.Fiscal_Year = :FY
INTO :AllocatedFuel, :AllocatedFltHrs;

END

if(:Quarter= l)then
BEGIN

SELECT Sum(Fuel_Ql), Sum(Hours_Ql)
FROM SQD_Allocated SA, Squadron S
WHERE S.Squadron_Name = :SquadronName and S.SquadronUIC = SA.SquadronJJIC and

SA.Fiscal_Year = :FY
INTO :AllocatedFuel, :AllocatedFltHrs;

END

if(:Quarter = 2)then
BEGIN

SELECT Sum(Fuel_Q2), Sum(Hours_Q2)
FROM SQD_Allocated SA, Squadron S
WHERE S.Squadron_Name = :SquadronName and S.SquadronUIC = SASquadronUIC and

SA.Fiscal_Year = :FY
INTO :AllocatedFuel,:AllocatedFltHrs;

END

if(:Quarter = 3)then
BEGIN

SELECT Sum(Fuel_Q3), Sum(Hours_Q3)
FROM SQD_Allocated SA, Squadron S
WHERE S.Squadron_Name = :SquadronName and S.SquadronJJIC = SA.SquadronUIC and

SA.Fiscal_Year = :FY
INTO :AllocatedFuel, :AllocatedFltHrs;

END

if (:Quarter = 4) then
BEGIN

SELECT Sum(Fuel_Q4), Sum(Hours_Q4)
FROM SQD_Allocated SA, Squadron S
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = SA.SquadronUIC and

SA.Fiscal_Year=:FY
INTO :AllocatedFuel, :AllocatedFltHrs;

END

95

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronJJIC and

NA.Main_Type = "AVDLR" and NA.Date_Of_Trans >= :BeginDate
and Date_Of_Trans <= :EndDate

INTO :ExecutedAVDLR;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.Squadron_Name = :SquadronName and S.SquadronUIC = NA.SquadronJJIC and

NA.MainType = "AFM" and NA.Date_Of_Trans >= :BeginDate
and Date_Of_Trans <= :EndDate

INTO :ExecutedAFM;

SELECT Sum(Fuel$)
FROM Squadron S, ASKIT A
WHERE S.Squadron_Name = :SquadronName and S.Squadron_UIC = ASquadronJUIC and

A.Trans_Start_Date >= :BeginDate and A.Trans_End_Date <= :EndDate
INTO :ExecutedFuel;

SELECT Sum(Flt_Hrs)
FROM Squadron S, ASKIT A
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = A.SquadronUIC and

A.Trans_Start_Date >= :BeginDate and A.Trans_End_Date <= :EndDate
INTO :ExecutedFltHrs;

SELECT Squadron_UIC
FROM Squadron
WHERE Squadron_Name = :SquadronName
INTO :SQD_UIC;

SELECT ShouldJWDLR, Should_AFM, Shouid_Fuel
FROM SHOULD_COST(:SQD_UIC, :FY, :BeginDate, :EndDate)
INTO :ShouldAVDLR, :ShouldAFM, :ShouldFuel;

SUSPEND;
ENDA

SET TERM;A

M. STORED PROCEDURE - SQUADRON DETAIL

CONNECT "d:\thesis\database\afast_db"
USER'sqldba" PASSWORD "masterkey";
SET TERM A;

CREATE PROCEDURE SQD_DETAIL(SquadronName Char(25), TMS_NO Integer,FY Integer,
BeginDate Date, EndDate Date) RETURNS
(ExecutedAVDLR Float, AVDLRPwrPlants Float, AVDLRAvionics Float, AVDLRAirFrames Float,
AVDLROther Float, AVDLRMiscTEC Float, AVDLROverhead Float,
ExecutedAFM Float, AFMPwrPlants Float, AFMAvionics Float, AFMAirFrames Float, AFMOther Float,
AFMMiscTEC Float, AFMOverhead Float, ExecutedFuel Float, ExecutedFltHrs Integer, ShouldAVDLR

96

Float, ShouldAFM Float, ShouldFuel Float, CostHrAVDLR Integer, CostHrAFM Integer, CostHrFuel
Integer, ActualCostHrAVDLR Float, ActualCostHrAFM Float,ActualCostHrFuel Float) AS

BEGIN

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.Squadron_Name = :SquadronName and S.SquadronJJIC = NA.SquadronJJIC and

NA.ID_TMS = :TMS_NO and NA.MainJType = "AVDLR" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :ExecutedAVDLR;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.Squadron_Name = :SquadronName and S.SquadronJJIC = NA.SquadronJJIC and

NA.ID_TMS = :TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH = "PWR_PLANTS" and
NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AVDLRPwrPlants;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.Squadron_Name = :SquadronName and S.SquadronJJIC = NA. Squadron JJIC and

NA.ID_TMS = :TMS_NO and NA.MainJType = "AVDLR" and NA.BRANCH = "AVIONICS" and
NA.Date_Of_Trans >= :BeginDate

and NA.Date_OfJTrans <= :EndDate
INTO :AVDLRAvionics;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronJ^ame = :SquadronName and S.SquadronJJIC = NA.SquadronJJIC and

NA.ID_TMS = :TMSJvrO and NA.Main_Type = "AVDLR" and NA.BRANCH = "AIRFRAMES" and
NA.Date_Of_Trans >= :BeginDate

and NA.DateJDfTrans <= :EndDate
INTO :AVDLRAirFrames;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S. SquadronJvJame = :SquadronName and S.SquadronJJIC = NA. Squadron JJIC and

NA.IDJTMS = :TMSJvfO and NA.MainJType = "AVDLR" and NA.BRANCH = "OTHER" and
NA.DateJDf_Trans >= :BeginDate

and NA.DateJDfTrans <= :EndDate
INTO :AVDLROther;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronJSfame = :SquadronName and S.SquadronJJIC = NA.SquadronJJIC and

NA.ID_TMS = :TMS_NO and NA.MainJType = "AVDLR" and NA.BRANCH = "MSCJEC" and
NA.DateJ3f_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AVDLRMiscTEC;

if (AVDLRMiscTEC is NULL) then
AVDLRMiscTEC = 0.0;

97

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.Squadron_UIC and

NA.IDTMS = :TMS_NO and NA.Main_.Type = "AVDLR" and NA.BRANCH = "OVERHEAD" and
NA.DateOfTrans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AVDLROverhead;

if (AVDLROverhead is NULL) then
AVDLROverhead = 0.0;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronJJIC = NA.SquadronUIC and

NA.ID_TMS = :TMS_NO and NA.Main_Type = "AFM" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :ExecutedAFM;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronJSfame = :SquadronName and S.Squadron_UIC = NA.SquadronUIC and

NA.ID_TMS = :TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH = "PWR_PLANTS" and
NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AFMPwrPlants;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.Squadron_UIC and

NA.ID_TMS = :TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH = "AVIONICS" and
NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AFMAvionics;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronUIC and

NA.ID_TMS = :TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH = "AIRFRAMES" and
NA.DateOfTrans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AFMAirFrames;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.Squadron_UIC and

NA.ID_TMS = :TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH = "OTHER" and
NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AFMOther;

SELECT Sum(Cost)
FROM Squadron S, NACA NA

98

WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NA.SquadronUIC and
NA.ID_TMS = :TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH = "MISCJIEC" and
NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO .AFMMiscTEC;

if (AFMMiscTEC is NULL) then
AFMMiscTEC = 0.0;

SELECT Sum(Cost)
FROM Squadron S, NACA NA
WHERE S.SquadronName = :SquadronName and S.SquadronUIC = NASquadronUIC and

NA.ID_TMS = :TMS_NO and NA.Main_.Type = "AFM" and NA.BRANCH = "OVERHEAD" and
NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :AFMOverhead;

if (AFMOverhead is NULL) then
AFMOverhead = 0.0;

SELECT Sum(Fuel$), Sum(A.Flt_Hrs)
FROM Squadron S, ASKIT A
WHERE S.SquadronName = :SquadronName and S.SquadronJJIC = A.SquadronUIC and

A.ID_TMS = :TMS_NO and A.Trans_Start_Date >= :BeginDate and A.Trans_End_Date <= :EndDate
INTO :ExecutedFuel, :ExecutedFltHrs;

SELECT T.AVDLR_Cost_Hour, T.AFM_Cost_Hour, T.Fuel_Cost_Hour
FROMTMST
WHERE T.ID_TMS = :TMS_NO
INTO :CostHrAVDLR, :CostHrAFM, :CostHrFuel;

if (ExecutedFltHrs is NULL) then
ExecutedFltHrs = 0;

ShouldAVDLR = ExecutedFltHrs * CostHrAVDLR;
ShouldAFM = ExecutedFltHrs * CostHrAFM;
ShouldFuel = ExecutedFltHrs * CostHrFuel;

ActualCostHrAVDLR = ExecutedAVDLR / ExecutedFltHrs;
ActualCostHrAFM = ExecutedAFM / ExecutedFltHrs;
ActualCostHrFuel = ExecutedFuel / ExecutedFltHrs;

SUSPEND;
ENDA

SET TERM;A

N. STORED PROCEDURE - TMS SUMMARY

CONNECT "d:\thesis\database\afast_db"
USER"sqldba" PASSWORD "masterkey";
SET TERM A;

99

CREATE PROCEDURE TMS_Summary(TMSName Char(7), FY Integer, BeginDate Date, EndDate
Date)
RETURNS (FRSAVDLR Float, FRSAFM Float, FRSFuel Float, FRSFltHrs Integer,

SupportAVDLR Float, SupportAFM Float, SupportFuel Float, SupportFltHrs Integer,
TacairAVDLR Float, TacairAFM Float, TacairFuel Float, TacairFltHrs Integer,
FRSShouldAVDLR Float, FRSShouldAFM Float, FRSShouldFuel Float,
SupportShouldAVDLR Float, SupportShouldAFM Float, SupportShouldFuel Float,
TacairShouldAVDLR Float, TacairShouldAFM Float, TacairShouldFuel Float) AS

DECLARE VARIABLE FRS_ID_TMS Integer;
DECLARE VARIABLE FRSCostHrAVDLR Integer;
DECLARE VARIABLE FRSCostHrAFM Integer;
DECLARE VARIABLE FRSCostHrFuel Integer;

DECLARE VARIABLE Support_ID_TMS Integer;
DECLARE VARIABLE SupportCostHrAVDLR Integer;
DECLARE VARIABLE SupportCostHrAFM Integer;
DECLARE VARIABLE SupportCostHrFuel Integer;

DECLARE VARIABLE Tacair_ID_TMS Integer;
DECLARE VARIABLE TacairCostHrAVDLR Integer;
DECLARE VARIABLE TacairCostHrAFM Integer;
DECLARE VARIABLE TacairCostHrFuel Integer;

DECLARE VARIABLE A Float;
DECLARE VARIABLE B Float;
DECLARE VARIABLE C Float;
DECLARE VARIABLE D Integer;
DECLARE VARIABLE E Integer;
DECLARE VARIABLE F Integer;
DECLARE VARIABLE G Integer;
DECLARE VARIABLE H Float;
DECLARE VARIABLE I Float;
DECLARE VARIABLE J Float;
DECLARE VARIABLE K Integer;
DECLARE VARIABLE L Integer;
DECLARE VARIABLE M Integer;
DECLARE VARIABLE N Integer;

BEGIN

SELECT T.IDJTMS, T.AVDLR_Cost_Hour, T.AFM_Cost_Hour, T.Fuel_Cost_Hour
FROMTMST
WHERE TMS = :TMSName and Mission = "R" and Fiscal_Year = :FY
INTO :FRSJD_TMS, :FRSCostHrAVDLR, :FRSCostHrAFM, :FRSCostHrFuel;

SELECT Sum(Cost)
FROMNACAN
WHERE N.ED_TMS = :FRS_ID_TMS and N.MainJType = "AVDLR"

and N.Date_Of_Trans >= :BeginDate and N.Date_Of_Trans <= :EndDate
INTO :FRSAVDLR;

SELECT Sum(Cost)
FROM NACA N

100

WHERE N.ID_TMS = :FRS_ID_TMS and N.MainJType = "AFM"
and N.Date_Of_Trans >= :BeginDate and N.Date_Of_Trans <= :EndDate

INTO :FRSAFM;

SELECT Sum(A.Fuel$), Sum(A.Flt_Hrs)
FROM ASKITA
WHERE A.ID_TMS = :FRS_ID_TMS and ATrans_Start_Date >= :BeginDate and A.Trans_End_Date

<= :EndDate
INTO :FRSFuel, :FRSFltHrs;

FRSShouldAVDLR = FRSFltHrs * FRSCostHrAVDLR;
FRSShouldAFM = FRSFltHrs * FRSCostHrAFM;
FRSShouldFuel = FRSFltHrs * FRSCostHrFuel;

SupportAVDLR = 0.0;
SupportAFM = 0.0;
SupportFuel = 0.0;
SupportFltHrs = 0;
SupportShouldAVDLR = 0.0;
SupportShouldAFM = 0.0;
SupportShouldFuel = 0.0;

FOR
SELECT T.KMTMS, T.AVDLR_Cost_Hour, T.AFM_Cost_Hour, T.Fuel_Cost_Hour
FROMTMST
WHERE TMS = :TMSName and Mission = "S" and Fiscal_Year = :FY
INTO :Support_ID_TMS, iSupportCostHrAVDLR, :SupportCostHrAFM, :SupportCostHrFuel

DO
BEGIN

SELECT Sum(Cost)
FROMNACAN
WHERE N.IDTMS = :Support_ID_TMSandN.Main_Type = "AVDLR"

and N.Date_Of_Trans >= :BeginDate and N.Date_Of_Trans <= :EndDate
INTO :H;

SELECT Sum(Cost)
FROMNACAN
WHERE N.DD_TMS = :Support_ID_TMS and N.Main_Type = "AFM"

and N.Date_Of_Trans >= :BeginDate and N.Date_Of_Trans <= :EndDate
INTO :I;

SELECT Sum(A.Fuel$), Sum(A.Flt_Hrs)
FROM ASKIT A
WHERE A.ID_TMS = :Support_ID_TMS and A.Trans_Start_Date >= :BeginDate and

A.Trans_End_Date <= :EndDate
INTO :J, :K;

if (:J is NULL) then
J = 0.0;

if (:K is NULL) then
K = 0;

L = K * SupportCostHrAVDLR;
M = K * SupportCostHrAFM;

101

N = K * SupportCostHrFuel;

SupportAVDLR = SupportAVDLR + H;
SupportAFM = SupportAFM +1;
SupportFuel = SupportFuel + J;
SupportFltHrs = SupportFltHrs + K;

SupportShouldAVDLR = SupportShouldAVDLR + L;
SupportShouldAFM = SupportShouldAFM + M;
SupportShouldFuel = SupportShouldFuel + N;

END
TacairAVDLR = 0.0;
TacairAFM = 0.0;
TacairFuel = 0.0;
TacairFltHrs = 0;
TacairShouldAVDLR = 0.0;
TacairShouldAFM = 0.0;
TacairShouldFuel = 0.0;

FOR
SELECT T.ID_TMS, T.AVDLR_Cost_Hour, T.AFM_Cost_Hour, T.Fuel_Cost_Hour
FROM TMS T
WHERE TMS = :TMSName and Mission = "T" and Fiscal_Year = :FY
INTO :Tacair_ID_TMS, :TacairCostHrAVDLR :TacairCostHrAFM, :TacairCostHrFuel

DO
BEGIN

SELECT Sum(Cost)
FROMNACAN
WHERE N.ID_TMS = :Tacair_ID_TMS and N.MainJType = "AVDLR"

and N.Date_Of_Trans >= :BeginDate and N.Date_Of_Trans <= :EndDate
INTO :A;

SELECT Sum(Cost)
FROMNACAN
WHERE N.ID_TMS = :Tacair_ID_TMS and N.MainJType = "AFM"

and N.Date_Of_Trans >= :BeginDate and N.Date_Of_Trans <= :EndDate
INTO :B;

SELECT Sum(A.Fuel$), Sum(A.Flt_Hrs)
FROM ASKIT A
WHERE A.ID_TMS = :Tacair_ID_TMS and A.Trans_Start_Date >= :BeginDate and

A.Trans_End_Date <= :EndDate
INTO :C, :D;

if(:C is NULL) then
C = 0.0;

if(:D is NULL) then
D = 0;

E = D * :TacairCostHrAVDLR;
F = D * :TacairCostHrAFM;
G = D * :TacairCostHrFuel;

102

TacairAVDLR = TacairAVDLR + A;
TacairAFM = TacairAFM + B;
TacairFuel = TacairFuel + C;
TacairFltHrs = TacairFltHrs + D;

TacairShouldAVDLR = TacairShouldAVDLR + E;
TacairShouldAFM = TacairShouldAFM + F;
TacairShouldFuel = TacairShouldFuel + G;

END

SUSPEND;
ENDA

SET TERM; A

O. STORED PROCEDURE - TMS DETAIL

CONNECT "d:\thesis\database\afast_db"
USER'sqldba" PASSWORD "masterkey";
SET TERM A;

CREATE PROCEDURE TMS_DETAIL(TMSName Char(7), FY Integer, BeginDate Date, EndDate
Date)
RETURNS (FRSAVDLRPwrPlants Float, FRSAVDLRAvionics Float, FRSAVDLRAirFrames Float,

FRSAVDLROther Float, FRSAVDLRMiscTEC Float, FRSAVDLROverhead Float,
FRSAFMPwrPlants Float, FRSAFMAvionics Float, FRSAFMAirFrames Float, FRSAFMOther Float,
FRSAFMMiscTEC Float, FRSAFMOverhead Float,
SupportAVDLRPwrPlants Float, SupportAVDLRAvionics Float, SuppoitAVDLRAirFrames Float,
SupportAVDLROther Float, SupportAVDLRMiscTEC Float, SupportAVDLROverhead Float,
SupportAFMPwrPlants Float, SupportAFMAvionics Float, SupportAFMAirFrames Float,
SupportAFMOther Float, SupportAFMMiscTEC Float, SupportAFMOverhead Float,
TacairAVDLRPwrPlants Float, TacairAVDLRAvionics Float, TacairAVDLRAirFrames Float,
TacairAVDLROther Float, TacairAVDLRMiscTEC Float, TacairAVDLROverhead Float,
TacairAFMPwrPlants Float, TacairAFMAvionics Float, TacairAFMAirFrames Float, TacairAFMOther
Float, TacairAFMMiscTEC Float, TacairAFMOverhead Float) AS

DECLARE VARIABLE FRS_TMS_NO Integer;
DECLARE VARIABLE Support_TMS_NO Integer;
DECLARE VARIABLE Tacair_TMS_NO Integer;
DECLARE VARIABLE A FLOAT;
DECLARE VARIABLE B FLOAT;
DECLARE VARIABLE C FLOAT;
DECLARE VARIABLE D FLOAT;
DECLARE VARIABLE E FLOAT;
DECLARE VARIABLE F FLOAT;
DECLARE VARIABLE Q FLOAT;
DECLARE VARIABLE H FLOAT;
DECLARE VARIABLE I FLOAT;
DECLARE VARIABLE J FLOAT;
DECLARE VARIABLE K FLOAT;
DECLARE VARIABLE L FLOAT;
DECLARE VARIABLE M FLOAT;
DECLARE VARIABLE N FLOAT;

103

DECLARE VARIABLE O FLOAT:
DECLARE VARIABLE P FLOAT
DECLARE VARIABLE Q FLOAT:
DECLARE VARIABLE R FLOAT
DECLARE VARIABLE S FLOAT
DECLARE VARIABLE T FLOAT:
DECLARE VARIABLE U FLOAT
DECLARE VARIABLE V FLOAT
DECLARE VARIABLE W FLOAT;
DECLARE VARIABLE X FLOAT;

BEGIN

SELECT E>_TMS
FROMTMST
WHERE T.TMS = :TMSName and T.Mission = "R" and Fiscal_Year = :FY
INTO :FRS_TMS_NO;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.JD_TMS = :FRS_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"PWR_PLANTS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :FRSAVDLRPwrPlants;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.E)_TMS = :FRS_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"AVIONICS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :FRSAVDLRAvionics;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.E>_TMS = :FRS_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"AIRFRAMES" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :FRSAVDLRAirFrames;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.ID_TMS = :FRS_TMS_NO and NA.MainType = "AVDLR" and NA.BRANCH =

"OTHER" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :FRSAVDLROther;

SELECT Sum(Cost)
FROM NACANA
WHERE NA.ID_TMS = :FRS_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"MISC_TEC" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :FRSAVDLRMiscTEC;
SELECT Sum(Cost)
FROMNACANA

104

WHERE NA.IDJTMS = :FRS_TMS_NO and NA.MainJType = "AVDLR" and NA.BRANCH =
"OVERHEAD" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :FRSAVDLROverhead;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.IDJTMS = :FRS_TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH =

"PWR_PLANTS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :FRSAFMPwrPlants;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.IDJTMS = :FRS_TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH =

"AVIONICS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :FRSAFMAvionics;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.EDJTMS = :FRS_TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH =

"AIRFRAMES" and NA.Date_Of_Trans >= :BeginDate
and NA.DateOfTrans <= :EndDate

INTO :FRSAFMAirFrames;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.ID_TMS = :FRS_TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH = "OTHER"

and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :FRSAFMOther;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.ID_TMS = :FRS_TMS_NO and NA.MainJType = "AFM" and NA.BRANCH =

"MISCJTEC" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :FRSAFMMiscTEC;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.DDJTMS = :FRS_TMSJNO and NA.MainJType = "AFM" and NA.BRANCH =

"OVERHEAD" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :FRSAFMOverhead;

SupportAVDLRPwrPlants = 0.0;
SupportAVDLRAvionics = 0.0;
SupportAVDLRAirFrames = 0.0;
SupportAVDLROther = 0.0;
SupportAVDLRMiscTEC = 0.0;
SupportAVDLROverhead = 0.0;
SupportAFMPwrPlants = 0.0;

105

SupportAFMAvionics = 0.0;
SupportAFMAirFrames = 0.0;
SupportAFMOther = 0.0;
SupportAFMMiscTEC = 0.0;
SupportAFMOverhead = 0.0;

FOR
SELECT ID_TMS
FROMTMS
WHERE TMS = :TMSName and Mission = "S" and Fiscal_Year = :FY
INTO :Support_TMS_NO

DO
BEGIN

SELECT Sum(Cost)
FROMNACANA
WHERE NA.ID_TMS = :Support_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"PWR_PLANTS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :M;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.E)_TMS = :Support_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"AVIONICS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO:N;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.ID_TMS = :Support_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"AIRFRAMES" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO:0;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.ID_TMS = :Support_TMS_NO and NA.MainType = "AVDLR" and NA.BRANCH =

"OTHER" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO:P;

SELECT Sum(Cost)
FROM NACANA
WHERE NA.ID_TMS = :Support_TMS_NO and NAMainJype = "AVDLR" and NA.BRANCH =

"MISC_TEC" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO:Q;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.ID_TMS = :Support_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"OVERHEAD" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO:R;

106

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.TDJTMS = :Support_TMS_NO and NA.MainJType = "AFM" and NA.BRANCH =

"PWR_PLANTS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO:S;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.ID_TMS = :Support_TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH =

"AVIONICS" and NA.Date_Of_Trans >= :BeginDate
and NADate_0fJTrans <= :EndDate

INTO:T;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.ID_TMS = :Support_TMS_NO and NAMainJType = "AFM" and NA.BRANCH =

"AIRFRAMES" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO:U;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.ID_TMS = :Support_TMS_NO and NA.MainJType = "AFM" and NA.BRANCH =

"OTHER" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :V;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.ID_TMS = :Support_TMS_NO and NA.MainJType = "AFM" and NA.BRANCH =

"MISCTEC" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :W;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.IDJTMS = : Support_TMS_NO and NA.MainJType = "AFM" and NA.BRANCH =

"OVERHEAD" and NA.Date_Of_trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :X;

SupportAVDLRPwrPlants =SupportAVDLRPwrPlants + M;
SupportAVDLRAvionics = SupportAVDLRAvionics + N;
SupportAVDLRAirFrames =SupportAVDLRAirFrames + O;
SupportAVDLROther = SupportAVDLROther + P;
SupportAVDLRMiscTEC = SupportAVDLRMiscTEC + Q;
SupportAVDLROverhead = SupportAVDLROverhead + R;
SupportAFMPwrPlants = SupportAFMPwrPlants + S;
SupportAFMAvionics = SupportAFMAvionics + T;
SupportAFMAirFrames = SupportAFMAirFrames + U;
SupportAFMOther = SupportAFMOther + V;
SuppoitAFMMiscTEC = SupportAFMMiscTEC + W;

107

SupportAFMOverhead = SupportAFMOverhead + X;
END

TacairAVDLRPwrPlants = 0.0;
TacairAVDLRAvionics = 0.0;
TacairAVDLRAirFrames = 0.0;
TacairAVDLROther = 0.0;
TacairAVDLRMiscTEC = 0.0;
TacairAVDLROverhead = 0.0;
TacairAFMPwrPlants = 0.0;
TacairAFMAvionics = 0.0;
TacairAFMAirFrames = 0.0;
TacairAFMOther = 0.0;
TacairAFMMiscTEC = 0.0;
TacairAFMOverhead = 0.0;

FOR
SELECT ID_TMS
FROMTMS
WHERE TMS = :TMSName and Mission = "T" and Fiscal_Year = :FY
INTO :Tacair_TMS_NO

DO
BEGIN

SELECT Sum(Cost)
FROMNACANA
WHERE NA.ID_TMS = :Tacair_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"PWR_PLANTS" and NA.Date_Of_Trans >= :BeginDate
and NA.DateOfTrans <= :EndDate

INTO:A;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.ID_TMS = :Tacair_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"AVIONICS" andNA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :B;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.IDJTMS = :Tacair_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"AIRFRAMES" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :C;

SELECT Sum(Cost)
FROMNACANA
WHERE NA.ID_TMS = :Tacair_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"OTHER" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :D;

SELECT Sum(Cost)
FROM NACA NA

108

WHERE NA.K>_TMS = :Tacair_TMS_NO and NA.MainJType = "AVDLR" and NA.BRANCH =
"MISC_TEC" and NA.Date_Of_Trans >= :BeginDate

and NA.Date_Of_Trans <= :EndDate
INTO :E;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.ID_TMS = :Tacair_TMS_NO and NA.Main_Type = "AVDLR" and NA.BRANCH =

"OVERHEAD" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO:F;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.ID_TMS = :Tacair_TMS_NO and NA.MainJType = "AFM" and NA.BRANCH =

"PWR_PLANTS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO:G;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.IDJTMS = :Tacair_TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH =

"AVIONICS" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :H;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.IDJTMS = :Tacair_TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH =

"AIRFRAMES" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :I;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.ID_TMS = :Tacair_TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH =

"OTHER" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :J;

SELECT Sum(Cost)
FROM NACA NA
WHERE NAJDJTMS = :Tacair_TMS_NO and NA.Main_Type = "AFM" and NA.BRANCH =

"MISC_TEC" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :K;

SELECT Sum(Cost)
FROM NACA NA
WHERE NA.ID_TMS = :Tacair_TMS_NO and NAMainJType = "AFM" and NA.BRANCH =

"OVERHEAD" and NA.Date_Of_Trans >= :BeginDate
and NA.Date_Of_Trans <= :EndDate

INTO :L;
TacairAVDLRPwrPlants = TacairAVDLRPwrPlants + A;

109

TacairAVDLRAvionics = TacairAVDLRAvionics + B;
TacairAVDLRAirFrames = TacairAVDLRAirFrames + C;
TacairAVDLROther = TacairAVDLROther + D;
TacairAVDLRMiscTEC = TacairAVDLRMiscTEC + E;
TacairAVDLROverhead = TacairAVDLROverhead + F;
TacairAFMPwrPlants = TacairAFMPwrPlants + G;
TacairAFMAvionics = TacairAFMAvionics + H;
TacairAFMAirFrames = TacairAFMAirFrames +1;
TacairAFMOther = TacairAFMOther + J;
TacairAFMMiscTEC = TacairAFMMiscTEC + K;
TacairAFMOverhead = TacairAFMOverhead + L;

END

SUSPEND;
ENDA

SET TERM;A

110

APPENDIX B. ASKIT REPORT, NACA EXTRACT, OP-20 REPORT

This appendix contains an example copy of an ASKIT report, NACA extract and a

OP-20 report. These three reports are used by AIRPAC to allocate flight hour and

maintenance funds, and track flight hour and maintenance expenditures.

A. ASKIT REPORT

The ASKIT report is utilized by AIRPAC to track reporting squadrons flight hour

expenditures and fuel costs. The ASKIT report is received by AIRPAC as a typical naval

message, with standard naval formatting of: From, To, Type of Classification, and Subject

Line.

In the Remarks section the AIRPAC subordinate command provides the following

information: AFAST / Command UIC / Type of Report / Begin Date / End Date.

There are three types of reports Update, Year-To-Date, and Initial Report. Initial

reports are submitted by squadrons when their data is first entered into the database, Year-

To-Date reports are submitted.on an as needed basis (i.e., quality assurance check on

data), and Update reports are submitted on a bi-monthly basis, itemizing flight hour and

fuel costs during the last 15 day period.

The next two lines give command flight and fuel cost information in the following

format: H or D (Home or Deployed), TMS, Flight Hours, Fuel Dollars, Month Flown.

For more information on the ASKIT message, see the COMNAVAIRP AC ASKIT

Users Manual, September 1993.

Ill

Example of an ASKIT UPDATE Report

FM STRKFITRON ONE NINE TWO//
TO RUWFEAA/COMNAVAIRPAC SAN DIEGO CA//AFAST//
BT
UNCLAS //N07300//
MSGID/GENADMIN/STRKFITRON 192//
SUBJ/AFAST (3.1 A) REPORT//
RMKS/ AFAST/R09076/UPD ATE/96092/96106
HAMAF 0 0 APR
D AMAF 150 125041 APR
POC-VFA-192 LT M. R. CRAIG, MCO//
BT

B. NACA EXTRACT

NACA is an AIRPAC developed extract program which tracks the spending of

Aviation Operations Maintenance (AOM) funds by extracting data from the NALCOMIS

database. NACA provides a means of capturing the cost of requisitions as they are

generated by the squadrons and AIMDs. This allows managers to monitor spending and

plan maintenance based on funds available and historical cost of repairs. The information

on each requisition is captured from NALCOMIS by an extract program and placed into

two DOS text files, INPUT.DLY and INPUT.T02 These files are then downloaded into

the AFAST database where they are manipulated and finessed to provide the requisite data

for the maintenance transaction report table. Detailed information concerning NACA and

NALCOMIS can be obtained from the COMNAVAIRPAC CODE N422C4 NACA

MANUAL [Boyd94].

1. INPUT.DLY DOS File

This DOS text file contains the extract data from the NALCOMIS requisition

extract process and provides requisition data to AFAST II. A sample daily report item is

112

provided below. Note that data fields may be left blank as inputs are not always applicable

in every maintenance transaction.

Example of a NACA INPUT.DLY Report and attribute definitions:

wc
ORG D9M
MCN
JCN P65269009
TRANS
ACT B
MAL D13
PRI 03
WUC 51
SYSTEM 94265
COMPDATE 94277

WC
ORG
MCN
JCN
TRANS
ACT
MAL
PRI
WUC
SYSTEM
COMPDATE

Work center code from completed MAF
Organization code of requisitioner
MAF control number
Job control number from MAF
Transaction code from completed MAF
Action Take Code from MAF
Malfunction code from MAF
Priority of MAF and requisition
Work unit code from completed MAF
System date from MAF —
Completed date from MAF

2 INPUT.T02 DOS File

This DOS text file contains the extract data from the NALCOMIS requisition

extract process and provides requisition data to AFASTII. Note that data fields may be

left blank as inputs are not always applicable in every maintenance transaction.

Example of a NACA INPUT.T02 Report and attribute definitions:

DDSN 4274G501
PROJ AKO
PRI 03
STATUS 274COMPL
JCN PC4273528
JON YG501
QTY 1

113

NIIN 001651942
NOMEN PACKING PREF
NETPRICE .00
UNITPRICE .23
EXTPRICE .23
BADPRICE
FGC
COG 9Z
MCC
REP CON C
ADVCD
TEC AMAF
ORG PC4
ORDERDATE 94274
PRICE 0.23
TDATE 94277

DDSN
PROJ
PRI
STATUS
JCN
JON
QTY
NIIN
NOMEN
NETPRICE
UNITPRICE
EXTPRICE
BADPRICE
FGC
COG
MCC
REP CON
ADV_CD
TEC
ORG
ORDERDATE
PRICE
TDATE

Document date serial number from requisition
Project code from requisition
Priority of MAF and requisition
Supply status
Job Control Number from MAF
Job order number from the requisition
Quantity ordered on requisition
National item identification number
Nomenclature of item ordered
Net price
Unit price from requisition
Extended price from the requisition
Bad price indicator
Family group code; for repairables only
Cognizance Code from requisition
Material control code from the requisition
Repairable/Consumable indicator
Advice code from requisition
Type equipment code from requisition
Organization code of the requisitioner
Date requisition was ordered
Numeric conversion of extended price data
Transaction date, when data processed

C. OP-20 REPORT

OP-20 is an OPNAV document that is the basis for the Flight Hour Program

budget. OP-20 depicts budgeted flight hours; a cost breakout for AFO, AVDLR, and all

other AOM costs in terms of a projected average fleet wide Cost Per Flight Hour (CPFH);

114

and annual costs for each TMS assigned to specific program elements within budget

activities. Two key factors dictate the level of AOM funds that AIRPAC receives:

Budgeted Flight Hours and AOM CPH for each TMS aircraft. The major contributing

factor that each NAS and CV controls in the flight hour program AOM budget is the

AOM cost for each TMS aircraft. The major contributing factor that the squadron

controls is the reported hours flown. . Detailed information concerning OP-20 accounting

and reporting procedures can be obtained from the COMNAVAIRPAC INST 7305.1.

Example of an OP-20 Report and attribute definitions:

OP-20 REPORT

PROGRAM —COST PER HOUR- —
ELEMENT TMS FORCES UTIL HOURS FUEL DLR MNT TOT

0204134M A-6E 40.0 22.910 10997 820 1421 546 2787
TOTAL 40.0 22.910 10977 820 1421 546 2787

0204136N FA-18C 130.0 29.581 46147 820 1210 640 2670
FA-18A 10.0 29.450 3534 766 3886 1234 5886

TOTAL 140.0 29.572 69681 816 1400 682 2899

02041444N F-14D 34.0 22.971 9372 998 1108 587 2693
F-14A 56.0 23.073 15505 987 2376 1221 4584

TOTAL 90.0 23.034 24877 991 1898 982 3872

PROGRAM ELEMENT:

TMS
FORCES
UTIL

HOURS
FUEL
DLR
MNT

Identifies TMS specific mission type or
Squadron. Examples: Marine TACATR, Navy
Support squadron VX-9, Navy FRS.

Type/Model/Series
Number of aircraft maintained by CNAP
Utilization. OPNAV constant used in determining number
of flight hours to be allocated.
Flight hours allocated for fiscal year
OP-20 Fuel cost per flight hour
OP-20 AVDLR cost per flight hour
OP-20 AFM cost per flight hour

115

APPENDIX C. USER INTERFACE DIAGRAMS AND FORMS

A. AIRPAC FLOW DIAGRAM

A1RPAC Button
(User App)

AIRPAC Form
(User App)

Stored Procedures
- AIRPAC Summary, Should Cost

Input Parameters (AIRPAC Summary)
- Begin date, End Date, Fiscal Year

Input Parameters (Should Cost)
- Squadron UIC, Begin Date, End Date, Fiscal Year

Output Parameters (AIRPAC Summary)
- Budget AVDLR, Budget AFM, Budget Fuel, Budget Fit Hrs,

Allocated AVDLR, Allocated AFM, Allocated Fuel, Allocated Fit Hrs, Executed
AVDLR, Executed AFM, Executed Fuel, Executed Fit Hrs, Should AVDLR, Should
AFM, Should Fuel

Output Parameters (Should Cost)
- Should AVDLR, Should AFM, Should Fuel

Calculated Parameters
- Budget Subtotal, Budget Total, Allocated Subtotal, Allocated Total, Executed

Subtotal, Executed Total, Balance AVDLR, Balance AFM, Balance Subtotal, Balance
Fuel, Balance Total, Balance Fit Hrs, Should Subtotal, Should Total, Delta AVDLR,
Delta AFM, Delta Fuel, Delta Subtotal, Delta Total, Var AVDLR, Var AFM, Var Fuel,
Var Subtotal, Var Total

116

B. NAS OR CV FLOW DIAGRAM

NAS or CV Button
(User App)

NAS or CV Dialog Box
(User App)

Database

NAS Form
(User App)

Database

Squadron Form
(User App)

RGANIZATTON

Database

Organization Form
(User App)

1. NAS or CV Form

Stored Procedures
- NAS_CV Summary, Should Cost

Input ParametersfNAS CV Summary)
- NAS Name, Begin Date, End Date, Fiscal Year, Quarter

Input Parameters (Should Cost)
- Squadron UIC, Begin Date, End Date, Fiscal Year

Output Parameters (NAS CV Summary)
- Allocated AVDLR, Allocated AFM, Allocated Fuel, Allocated Fit Hrs,

Executed AVDLR, Executed AFM, Executed Fuel, Executed Fit Hrs, Should AVDLR,
Should AFM, Should Fuel

Output Parameters (Should Cost)
- Should AVDLR, Should AFM, Should Fuel

Calculated Parameters:
- Allocated Subtotal, Allocated Total,Executed Subtotal, Executed Total,

Balance AVDLR, Balance AFM, Balance Subtotal, Balance Fuel, Balance Total,
Balance Fit Hrs, Should Subtotal, Should Total, Delta AVDLR, Delta AFM, Delta Fuel,
Delta Subtotal, Delta Total Var AVDLR, Var AFM, Var Fuel, Var Subtotal, Var Total

117

2. Squadron Form from NAS or CV Dialog box

Stored Procedures
- NAS-Squadron Summary, NAS-Squadron Detail, Should Cost

Input Parameters (NAS-Squadron Summary)
- NAS or CV Name, Squadron Name, Begin Date, End Date, Fiscal Year, Quarter

Input Parameters fNAS-Squadron Detain
- Squadron Name, NAS or CV Name, TMS Number, Fiscal Year, Begin Date,

End Date

Input Parameters (Should Cost)
- Squadron UIC, Begin date, End Date, Fiscal Year

Output Parameters (NAS-Squadron Summary')
- Allocated Fuel, Allocated Fit Hrs, Executed AVDLR, Executed AFM, Executed

Fuel, Executed Fit Hrs, Should AVDLR, Should AFM, Should Fuel

Output Parameters (NAS-Squadron Detail
- Executed AVDLR, AVDLR Power Plants, AVDLR Avionics, AVDLR Air

Frames, AVDLR Other, AVDLR Misc. TEC, AVDLR Overhead, Executed AFM, AFM
Power Plants, AFM Avionics, AFM Air Frames, AFM Other, AFM Misc. TEC, AFM
Overhead,Executed Fuel, Executed Fit Hrs, Should AVDLR, Should AFM, Should Fuel,
Cost/Hour AVDLR, Cost/Hour AFM, Cost/Hour Fuel,Actual Cost/Hour AVDLR, Actual
Cost/Hour AFM, Actual Cost/Hour Fuel

Output Parameters (Should Cost)
- Should AVDLR, Should AFM, Should Fuel

Calculated Parameters
- Allocated Total,Executed Subtotal, Executed Total, Balance AVDLR, Balance

AFM, Balance Subtotal, Balance Fuel, Balance Total, Balance Fit Hrs, Should Subtotal,
Should Total, Delta AVDLR, Delta AFM, Delta Fuel, Delta Subtotal, Delta Total Var
AVDLR, Var AFM, Var Fuel, Var Subtotal, Var Total

3. Organization Form from NAS or CV Dialog Box

Stored Procedures
- ORG Summary

Input Parameters:
- ORG Name, NAS or CV Name, Begin date, End Date, Fiscal Year

118

Output Parameters:
- AVDLR Power Plants, AVDLR Avionics, AVDLR Air Frames, AVDLR Other,

AVDLR Misc. TEC, AVDLR Overhead, AFM Power Plants, AFM Avionics, AFM Air
Frames, AFM Other, AFM Misc. TEC, AFM Overhead

Calculated Parameters:
- AVDLR Total, AFM Total

C. CVW FLOW DIAGRAM

CVW

CVW Button
(User App)

I
CVW Dialog Box

(User App)

Database

CVW Form
(User App)

SQUADRON

Database

Squadron Form
(User App)

1. CVW Form

Stored Procedures
- CVW Summary, Should Cost

Input Parameters f CVW Summary)
- CVW Name, Begin date, End Date, Fiscal Year, Quarter

Output Parameters (CVW Summary)
- Allocated Fuel, Allocated Fit Hrs, Executed AVDLR, Executed AFM, Executed

Fuel, Executed Fit Hrs, Should AVDLR, Should AFM, Should Fuel

119

Calculated Parameters
- Allocated Total, Executed Subtotal, Executed Total, Balance AVDLR, Balance

AFM, Balance Subtotal, Balance Fuel, Balance Total, Balance Fit Hrs, Should Subtotal,
Should Total, Delta AVDLR, Delta AFM, Delta Fuel, Delta Subtotal, Delta Total
Var AVDLR, Var AFM, Var Fuel, Var Subtotal, Var Total

2. Squadron Form from CVW Dialog Box (refer to section heading B-2
replacing references to NAS or CV with CVW)

D. SQUADRON FLOW DIAGRAM

Squadron Button
(User App)

T
Squadron Dialog Bos

(User App)

Squadron Form
(User App)

Stored Procedures
- Squadron Summary, Squadron Detail, Should Cost

Input Parameters (Squadron Summary)
- Squadron Name, Begin date, End Date, Fiscal Year, Quarter

Input Parameters (Squadron Detail)
- Squadron Name, TMS Number, Begin date, End Date

Input Parameters (Should Cost)
- Squadron UIC, Begin date, End Date, Fiscal Year

120

Output Parameters (Squadron Summary)
- Allocated Fuel, Allocated Fit Hrs, Executed AVDLR, Executed AFM, Executed

Fuel, Executed Fit Hrs, Should AVDLR, Should AFM, Should Fuel

Output Parameters (Squadron Detain
- Executed AVDLR, AVDLR Power Plants, AVDLR Avionics, AVDLR Air

Frames, AVDLR Other, AVDLR Misc. TEC, AVDLR Overhead, Executed AFM, AFM
Power Plants, AFM Avionics, AFM Air Frames, AFM Other, AFM Misc. TEC, AFM
Overhead,Executed Fuel, Executed Fit Hrs, Should AVDLR, Should AFM, Should Fuel,
Cost/Hour AVDLR, Cost/Hour AFM, Cost/Hour Fuel, Actual Cost/Hour AVDLR, Actual
Cost/Hour AFM, Actual Cost/Hour Fuel

Output Parameters (Should Cost)
- Should AVDLR, Should AFM, Should Fuel

Calculated Parameters:
- Allocated Total, Executed Subtotal, Executed Total, Balance AVDLR, Balance

AFM, Balance Subtotal, Balance Fuel, Balance Total, Balance Fit Hrs, Should Subtotal,
Should Total, Delta AVDLR, Delta AFM, Delta Fuel, Delta Subtotal, Delta Total Var
AVDLR, Var AFM, Var Fuel, Var Subtotal, Var Total

121

E. TMS FLOW DIAGRAM

TMS Button
(User App)

I
TMS Dialog Box

(User App)

TMS

Database

SQUADRON

Database

TMS Form
(User App)

Squadron Form
(User App)

1. TMS Form

Stored Procedures
- TMS Summary, TMS Detail,

Input Parameters (TMS Summary)
- TMS Name, Fiscal Year, Begin Date, End Date

Input Parameters (TMS Detail)
- TMS Name, Fiscal Year, Begin Date, End Date

Output Parameters (TMS Summary)
- FRS AVDLR, FRS AFM, FRS Fuel, FRS Fit Hrs, FRS Should AVDLR, FRS

Should AFM, FRS Should Fuel, Support AVDLR, Support AFM, Support Fuel, Support
Fit Hrs, Support Should AVDLR, Support Should AFM, Support Should Fuel, Tacair
AVDLR, Tacair AFM, Tacair Fuel, Tacair Fit Hrs, Tacair Should AVDLR, Tacair Should
AFM, Tacair Should Fuel

Output Parameters (TMS Detain
- FRS AVDLR Power Plants, FRS AVDLR Avionics, FRS AVDLR Air Frames,

FRS AVDLR Other, FRS AVDLR Misc TEC, FRS AVDLR Overhead,FRS AFM Power
Plants, FRS AFM Avionics, FRS AFM Air Frames, FRS AFM Other, FRS AFM Misc
TEC, FRS AFM Overhead, Support AVDLR Power Plants, Support AVDLR Avionics,
Support AVDLR Air Frames, Support AVDLR Other, Support AVDLR Misc TEC,

122

Support AVDLR Overhead, Support AFM Power Plants, Support AFM Avionics,
Support AFM Air Frames, Support AFM Other, Support AFM Misc TEC, Support AFM
Overhead, Tacair AVDLR Power Plants, Tacair AVDLR Avionics, Tacair AVDLR Air
Frames, Tacair AVDLR Other, Tacair AVDLR Misc TEC, Tacair AVDLR Overhead,
Tacair AFM Power Plants, Tacair AFM Avionics, Tacair AFM Air Frames, Tacair AFM
Other, Tacair AFM Misc TEC, Tacair AFM Overhead

Calculated Parameters
- Total AVDLR, Total AFM, Total Fuel, Total Fit Hrs, Total Should AVDLR,

Total Should AFM, Total Should Fuel, FRS Var AVDLR, FRS Var AFM, FRS Var Fuel,
Support Var AVDLR, Support Var AFM, Support Var Fuel, Tacair Var AVDLR, Tacair
Var AFM, Tacair Var Fuel, Total Var AVDLR, Total Var AFM, Total Var Fuel,Total
AVDLR Power Plants, Total AVDLR Avionics, Total AVDLR Air Frames, Total
AVDLR Other, Total AVDLR Misc TEC, Total AVDLR Overhead, Total AFM Power
Plants, Total AFM Avionics, Total AFM Air Frames, Total AFM Other, Total AFM Misc
TEC, Total AFM Overhead

2. Squadron Form from TMS Dialog Box (refer to section heading D)

123

% AIRPAC Financial Analysis Tool (AFAST) - [AIRPAC SUMMARY!

Fiscal Year) 995
Begin DateTO/1/94

AIRPAC SUMMARY

End Datefl/30/95

OP-20 Budget
CNAP
Allocated

CNAP
Executed

CHAP
Allocated
Balance

OP-20
Should
Cost

OP-20
Execute
Delta-!

VARto
Should
Cost-*

AVDLR $:451.247J008 296,400592 19345210 276555,782 106,627,512 86,782302 81.4

AFM $; 223.094000 146,426,000 3,339,547 143,066,453 38,234,028 34,895,281 91.3

Sub Total $:67434ifl08 442,826,992 23,184,757 419,642,235 144362^40 121,677383 843

Fuel $: 196.152^92 73322,000 44,789,088 29,132,112 42,122,536 -2,667.352 -6.3

Total $! 870,494300 516,748^92 67,974,645 448,774,347 186384376 119,010231 633

FLTHRS: 379,085 168,695 75367 93^28

Figure 1. AFAST II User Interface and AIRPAC Form

Fiscal Yearl 995
Begin Datei 0/1/94

End Dateä/30/95

Total $ 129,234,178

FLT HRS : 34.467

NAS North Island

OP-20 OP-20 VARto
CNAP CNAP Allocated Should Executed Should
Allocated Executed Balance Cost Dalta-4) Cost-%

WDLR$ 76.865.000 76.865.000 40.836,168 40.836.168 100.0

AFM$ 42.859.000 42.859.000 15.151.165 15.151.165 100.0

b Total $ 119,724,000 0 119,724,000 55,987,333 55,987,333 100.0

Fuel$ 9.510.178 8.888.562 621.616 8.081.273 -807.289 -10.0

8,888,562

26,922

120,345,616 64,068,606 65,180,044

7,545

Figure 2. Typical NAS or CV Form

86.1

124

Fiscal Year 1995
Begin Datei 0/1/94

End Date:9/30/95

CVW-2

CNAP
Allocated

CNAP
Executed

Allocated
Balance

OP-20
Should
Cost

OP-20
Executed
Delta-*

AVDLR$ 0 0 0

AFM$ 0 0 0

Sub Total $ 0 0 0 0

Fuel$

Total $ 0

FLTHRS:

Figure 3. Typical CVW Form

Generated by: USS Abraham Lincoln
Fiscal Year: 1995
Begin Date: 10/1/94

End Date: 9/30/95

SUP ABE LINCOLN

CNAP
Executed AVLDR

VARto
Should
Cost-%

CNAP
Executed AFM

Pwr Plants

Avionics

Air Frames

Other

Misc TEC

Overhead

Total

Figure 4. Typical Organization Form

125

Fiscal Year1995 VFA-22
Begin Date: 10/1/94
End Date:9/30/95

Allocated Executed
Allocated
Balance

OP-20
Should
Cost

OP-20
Executed
Delta

VARto
Should
Cost

AVDLR$ 4,028,008 4,028,008 9.45S.658 5,430,650 57.4

AFM$

Sub Total $

711.406 711.406 3.195.666 2.484.260 77.7

4,739,414 4,739,414 12,654,324 7,914,910 62.5

Fuel$

Total $

2.898.000 4.631.136 -1.733.136 4.806.333 175.197 3.6

2,898,000 9,370,550 -6,472,550 17,460,657 8,090,107 46.3

FLT HRS: 3,807 6,417 -2,610

Figure 5. Typical Squadron Overview Form

VFA-22
Fiscal YeaM 995 FA-18C
Begin Date 10/1/94

End Date:9/30/95

CNAP OP-20 CNAP OP-20
Execution Should Cost Execution Should Cost

AVDLR 4.028.008 9.458.658 FUEL 4.631.136 4.806.333
Pwr Plants 130.368

Avionics 3.002.952 FLT HRS 6.417
Air Frames 894,688

Other 0
Misc TEC 0
Overhead 0

AFM 711.406 3.195.666 COST PER HOUR
Pwr Plants

Avionics
6.089
99.249 FUEL 722 749

Air Frames 130,269 AVDLR 628 • 1,474
Other

Misc TEC
475.799
0

AFM 111 498

Overhead 0

Figure 6. Typical Squadron Detailed Form

126

Fiscal Year:1995 FA-18C
Begin Date: 10/1/94

End Date: 9/30/95 CNAP OP-20 VARto
Execution Should Should Cost

AVDLR $ £294',160 100

FRS AFM$ 2,124.200 100
FUEL$ 3,251.437 3,378.295 4

FLTHRS 4,085

AVDLR $ 0 0
AFM$ 0 0

SUPPORT FUELS

FLTHRS

0

0

0

AVDLR$ 7.451,160 51,648,960 85.6

TACAIR AFM$ 1,829.225 17,449,920 89.5
FUELS 26,153,968 26,244,960 0.3

FLT HRS 35,040

AVDLR$ 7,451,160 56,943,120 86.9 •

TOTAL AFMS 1.829,225 19,574,120 90.7
FUELS 29,405,405 29,623,255 0.7

FLTHRS 39,125

Figure 7. Typical TMS Overview Form

Fiscal Yeaii 995 FA-18C
Begin Date 10/1/94 TACAIR

End Date3/30/95

CNAP OP-20 CNAP OP-20
Execution Should Cost Execution Should Cost

AVDLR 7.451.160 51.648.960 FUEL 26,153.968 26.244.960
Pwr Plants 510,549

Avionics 5.253.616
Air Frames 1.686.995 FLTHRS 35.040

Other 0
Misc TEC
Overhead

AFM 1.829.225 17.449.920 SQUADRONS
Pwr Plants 14.699

Avionics 329.666
Air Frames 231.859

Other 1.253,001
Misc TEC
Overhead

Figure 8. Typical TMS Mission Type Form

127

APPENDIX D. ACRONYMS

AFAST

AFM

AFO

AIMD

AIRPAC

ASKIT

ATAC

AVDLR

BCM

BOR

CINCPACFLT

CNAP

CPH

CV

CVN

cvw

DBMS

FHP

FRS

GUI

IBM

AIRPAC Financial Analysis Tool

Aircraft Fleet Maintenance

Aircraft Flight Operations

Aircraft Intermediate Maintenance Department

Naval Air Forces Pacific Fleet

Aviation Storekeeper Information Tracking System

Advance Traceability and Control hub

Aviation Depot Level Repair

Beyond the Capability of Maintenance

Budget OPT AR Report

Commander-in-Chief Pacific Fleet

Commander, Naval Air Forces Pacific Fleet

Cost Per Hour

Carrier

Carrier (nuclear)

Carrier Air Wing

Database Management System

Flight Hour Program

Fleet Readiness Squadron

Graphical User Interface

International Business Machine

128

IMA

MAF

MDI

MIS

NACA

NALCOMIS

NAS

NON-RFI

NPS

OP-20

OPNAV

OPTAR

PC

RFI

SDI

SFOEDL

TACAIR

TMS

USMC

USN

wss

WYSIWYG

Intermediate Maintenance Activity

Maintenance Action Form

Multiple Document Interface

Management Information System

NALCOMIS AIMD Cost Accounting

Naval Aviation Logistics Command System

Naval Air Station

Non-Ready For Issue

Naval Postgraduate School

Operational Report 20

Office of the Chief of Naval Operations

Operating Targets

Personal Computer

Ready For Issue

Single Document Interface

Summary Filled Order Expenditure Difference Listing

Tactical Air (mission), Tactical Aircraft

Type/Model/Series

United States Marine Corps

United States Navy

Wholesale Supply System

What You See Is What You Get

129

130

LIST OF REFERENCES

[Boyd94]

[CNAP86]

[CNAP93]

[Elmasri94]

[Fidel87]

[Gonzalez95]

[Kroenke88]

[Lauff96]

[Maciaszek89]

[Marcus92]

[Mayhew92]

[McCormick87]

[NPS96]

Boyd, CA., COMNA VAIRPAC Fiscal Management Study,
Commander Naval Air Forces Pacific, 25 August 1994.

COMNAVAIRPACINST 7305.1, Instructions concerning
Aircraft Operations Maintenance Funds, Commander Naval Air
Forces Pacific, 21 February 1986.

COMNAVAIRPAC ASKIT USERS MANUAL, Commander Naval
Air Forces Pacific, September 1993.

Elmasri, R., and Navathe, S., Fundamentals of Database
Systems, Benjamin/Cummings Publishing Co., Inc. 1994.

Fidel, Raya, Database Design for Information Retrieval,
John Wiley and Sons, 1987.

Gonzalez, Mark, personal correspondence with AIRPAC staff dtd
14 December 1995.

Kroenke, D., and Dolan, K., Database Processing, Macmillan
Publishing Co., New York, NY, 1988.

Lauff, Jeff, AFASTII Design Review Minutes, Naval Postgraduate
School, Monterey, CA., 10 May 1996.

Maciaszek, L., Database Design and Implementation, Prentice
Hall, 1989.

Marcus, A, Graphic Design for Electronic Documents and User
Interfaces, ACM Press, New York, NY, 1992.

Mayhew, D., Principles and Guidelines in Software User Interface
Design, Prentice Hall 1992.

McCormick, B., Defanti, T., and Brown, R., "Visualization in
scientific computing and computer graphics", ACMSIGGRAPH 21,
November 1987.

Naval Postgraduate School, Research Proposal, March 21, 1996.

131

[Nelson80]

[Nielsen90]

[Norman91]

[Pressman92]

[Rutkowski82]

[Shneiderman93]

[Williams90]

[Wu96]

Nelson, T., "Interactive systems and the design of virtuality",
Creative Computing, November 1980 and December 1980.

Nielsen, I, Hypertext andHypermedia, Academy Press, San
Diego, CA, 1990.

Norman, K., The Psychology of Menu Selection; Designing
Cognitive Control at the Human/Computer Interface, Ablex,
Norwood, NJ, 1991.

Pressman, R.S., Software Engineering: A Practitioner's
Approach, McGraw Hill, New York, NY, 1992.

Rutkowski, C, "An Introduction to the Human Applications
Standard Computer Interface, Part 1; Theory and Principles", Byte,
October 1982.

Shneiderman, B., Designing the User Interface, Strategies for
Effective Human-Computer Interaction, Addison-Wesley
Publishing Co., 1993.

Williams, J., "Guidelines for Dialogue Design", Designing and
Using Human Computer Interface and Knowledge Based Systems,
Elsevier Science Publishers, 1990.

Wu, C. Thomas, Advanced Database Systems (Class Notes -
CS4312), Department of Computer Science, Naval Postgraduate
School, Monterey, CA, 1996.

132

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

4. Dr C. Thomas Wu, Code CS/KA
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

5. John Falby Code CS/FA
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

6. CDR Mark J. Gonzalez
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

7. LT Mitch R. Hayes
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

133

